Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 26 - 26
1 Aug 2018
Buttaro M Slullitel P Sánchez M Greco G McLoughlin S García-Ávila C Comba F Zanotti G Piccaluga F
Full Access

Although there is some clinical evidence of ceramic bearings being associated with a lower infection rate after total hip arthroplasty (THA), available data remains controversial since this surface is usually reserved for young, healthy patients. Therefore, we investigated the influence of five commonly-used biomaterials on the adhesion potential of four biofilm-producing bacteria usually detected in infected THAs. In this in-vitro research, we evaluated the ability of S. aureus, S. epidermidis ATCC 35984, E. coli ATCC 25922 and P. aeruginosa to adhere to the surface of solid biomaterials, including a 28mm cobalt-chromium metal head, a 28mm fourth-generation ceramic head, a 48mm fourth-generation ceramic insert, a 48mm highly-crossed linked polyethylene insert and a 52mm titanium porous-coated acetabular component. After an initial vortex step, a bacterial separation from the surface of each specimen was done until no remaining attached bacteria were observed by digital optical microscope. The colony-forming units were counted to determine the number of viable adherent bacteria and the bacterial density. We found no differences on global bacterial adhesion between the different surfaces. E. coli presented the least adherence potential among the analysed pathogens (p<0.001). The combination of E. coli and S. epidermidis generated an antagonist effect over the adherence potential of S. epidermidis individually (58±4% vs. 48±5%; p=0.007). The combination of P. aeruginosa and S. aureus presented a trend to an increased adherence of P. aeruginosa independently, suggesting an agonist effect (71% vs. 62%; p=0.07). In this study, ceramic bearings appeared not to be related to a lower bacterial adhesion than other biomaterials. However, different adhesive potentials among bacteria may play a major role on infection's inception


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 57 - 57
1 Oct 2019
Gil D Grindy S Hugard S Muratoglu OK Oral E
Full Access

Introduction. Ultra-high molecular weight polyethylene (UHMWPE) can provide local sustained delivery of therapeutics. 1,2. For example, it can deliver analgesics to address post-arthroplasty pain. 2. Given that several analgesics, such as bupivacaine (anesthetic) and tolfenamic acid (NSAID), were shown to possess antibacterial activity against Staphylococci, we hypothesize that analgesic-loaded UHMWPE can also yield antimicrobial effects, preventing the development of periprosthetic joint infections. Methods. Bupivacaine and tolfenamic acid were incorporated into UHMWPE via phase-separated compression molding. Drug release from the prepared samples was measured using high-performance liquid chromatography. Antibacterial studies of the obtained materials were conducted against methicillin-sensitive, and methicillin-resistant S. aureus, as well as S. epidermidis. Time-kill curves were obtained to characterize antimicrobial activity against planktonic bacteria. The dynamics of bacterial adhesion were assessed to characterize antibiofilm activity. Scanning electron microscopy (SEM) was used to visualize adherent bacteria. Anticolonizing activity of the tested materials was characterized using the “daughter cell” method as outlined elsewhere. 3. Cytotoxicity profile of drug-loaded UHMWPEs was evaluated using MG-63 osteoblast cell line. Results. The bupivacaine release rate generally increased with increasing drug loading (e.g. a model knee implant loaded with bupivacaine would release ca. 15–500 mg over 24 hours). While also proportional, drug release from UHMWPE loaded with tolfenamic acid was much lower. The bacterial viability curves showed that bupivacaine-loaded UHMWPE possessed moderate antibacterial activity against planktonic MSSA, MRSA, and S. epidermidis, slowing bacteria proliferation by up to 70%. Bupivacaine-loaded UHMWPE also mitigated biofilm formation and development during the initial culture period. SEM images confirmed the observed antibiofilm effect (Fig. 1). Tolfenamic acid-loaded UHMWPE allowed proliferation of planktonic bacteria. At the same time, these materials showed pronounced dose-dependent anticolonizing activity against tested strains, providing 3-log reduction of “daughter” cells. Bupivacaine- and tolfenamic acid-loaded UHMWPEs showed little-to-no cytotoxicity against osteoblasts. Discussion & Conclusions. We demonstrated for the first time that bupivacaine-loaded UHMWPE possesses dose-dependent antibacterial properties against planktonic and adherent MSSA, MRSA, and S. epidermidis – pathogens commonly associated with periprosthetic joint infections. Pronounced anticolonizing activity was evident for tolfenamic acid-loaded UHMWPE. Due to the low solubility of tolfenamic acid, the material's antibacterial effect against planktonic bacteria was lower. These results demonstrate that analgesic-loaded UHMWPE, used as a tool in multimodal pain management, can also yield antibacterial effects, opening an entirely new avenue for providing post-arthroplasty antibacterial prophylaxis. This pioneering approach has a potential to reduce patients' morbidity and mortality after arthroplasty. For any tables or figures, please contact the authors directly