Advertisement for orthosearch.org.uk
Results 1 - 20 of 523
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 147 - 156
1 Feb 2014
Rajpura A Kendoff D Board TN

We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual’s functional demands. Cite this article: Bone Joint J 2014;96-B:147–56


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 57 - 57
19 Aug 2024
Jones SA Davies O
Full Access

Dislocation following revision THA remains a leading cause of failure. Integrity of the abductor muscles is a major contributor to stability. Large diameter heads (LDH), Dual Mobility (DM) and Constrained Acetabular Liners (CAL) are enhanced stability options but the indication for these choices remains unclear. We assessed an algorithm based on Gluteus Medius (GM) deficiency to determine bearing selection. Default choice with no GM damage was a LDH. GM deficiency with posterior muscle intact received DM and CAL for GM complete deficiency with loss of posterior muscle. Consecutive revision THA series followed to determine dislocation, all-cause re-revision and Oxford Hip Score (OHS). 311 revision THA with mean age 70 years (32–95). At a mean follow-up of 4.8 years overall dislocation rate 4.1% (95%CI 2.4–7.0) and survivorship free of re-revision 94.2% (95%CI 96.3–91.0). Outcomes:. Group 1 - LDH (36 & 40mm) n=164 / 4 dislocations / 7 re-revisions. Group 2 - DM n=73 / 3 dislocations / 4 re-revisions. Group 3 - CAL n=58 / 5 dislocations / 7 re-revisions. Group 4 - Other (28 & 32mm) n=16 / 1 dislocation / no re-revisions. Mean pre-op OHS: 19.6 (2–47) and mean post-op OHS: 33.9 (4–48). Kaplan-Meier analysis at 60 months dislocation-free survival was 96.1% (95% CI: 93.0–97.8). There was no difference between survival distributions comparing bearing choice (p=0.46). Decision making tools to guide selection are limited and in addition soft tissue deficiency has been poorly defined. The posterior vertical fibres of GM have the greatest lateral stabiliser effect on the hip. The algorithm we have used clearly defined indication & implant selection. We believe our outcomes support the use of an enhanced stability bearing selection algorithm


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 2 - 2
2 May 2024
Gunn C Thakker V Jones HW Barrow J
Full Access

Ceramic bearing fracture is a rare complication following implantation using modern day ceramic bearing materials. Revision bearing options in such cases is debated, with the choice between ceramic-on-ceramic and ceramic-on-polyethylene bearings. Revision to a hard on soft bearing raises concerns about potential catastrophic wear secondary to a third-body reaction caused by the fractured ceramic particles. Data was collected retrospectively from the NJR, electronic patient records, revision database and picture archiving and communication system. Templating software was used to determine linear wear between first post-operative radiograph and the latest available follow up. Univariate analysis was used to examine patient demographics and the wear rates for revision of ceramic bearing fractures to ceramic on polyethylene components. The intra and inter-rater reliability of wear measurements was calculated. There were twelve patients identified as meeting the inclusion criteria. The average age at revision was 62 years (54–72). There were 6 liner and 6 head fractures revised to delta ceramic heads and cross-linked polyethylene acetabular components. The most frequently used head size was 32mm. At mean follow up of 3.8 years (0.5 6.1 years), median 4.4 years, linear wear rate was calculated at 0.08± 0.06 mm/year. Both intra-rater and inter-rater reliability was excellent with ICC scores of 0.99 at all timepoints. Revision to ceramic on polyethylene (CoP) bearings following ceramic fracture does not cause early catastrophic wear at early follow up. It appears safe to use this hard on soft bearing combination, given that wear rates are comparable to what is expected in a primary hip replacement setting. Longer follow up is required to establish if this trend persists


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 12 - 19
1 Jan 2010
Vendittoli P Roy A Mottard S Girard J Lusignan D Lavigne M

We have updated our previous randomised controlled trial comparing release of chromium (Cr) and cobalt (Co) ions and included levels of titanium (Ti) ions. We have compared the findings from 28 mm metal-on-metal total hip replacement, performed using titanium CLS/Spotorno femoral components and titanium AlloFit acetabular components with Metasul bearings, with Durom hip resurfacing using a Metasul articulation or bearing and a titanium plasma-sprayed coating for fixation of the acetabular component. Although significantly higher blood ion levels of Cr and Co were observed at three months in the resurfaced group than in total hip replacement, no significant difference was found at two years post-operatively for Cr, 1.58 μg/L and 1.62 μg/L respectively (p = 0.819) and for Co, 0.67 μg/L and 0.94 μg/L respectively (p = 0.207). A steady state was reached at one year in the resurfaced group and after three months in the total hip replacement group. Interestingly, Ti, which is not part of the bearing surfaces with its release resulting from metal corrosion, had significantly elevated ion levels after implantation in both groups. The hip resurfacing group had significantly higher Ti levels than the total hip replacement group for all periods of follow-up. At two years the mean blood levels of Ti ions were 1.87 μg/L in hip resurfacing and and 1.30 μg/L in total hip replacement (p = 0.001). The study confirms even with different bearing diameters and clearances, hip replacement and 28 mm metal-on-metal total hip replacement produced similar Cr and Co metal ion levels in this randomised controlled trial study design, but apart from wear on bearing surfaces, passive corrosion of exposed metallic surfaces is a factor which influences ion concentrations. Ti plasma spray coating the acetabular components for hip resurfacing produces significantly higher release of Ti than Ti grit-blasted surfaces in total hip replacement


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 13 - 13
19 Aug 2024
DeBenedetti A Weintraub MT Valle CJD Jacobs JJ Nam D
Full Access

The purpose of this randomized controlled trial was to evaluate serum metal levels in patients undergoing total hip arthroplasty (THA) with a conventional compared to a modular dual-mobility bearing. Patients undergoing primary THA for osteoarthritis were randomized to receive either a modular dual-mobility or conventional polyethylene bearing. All patients received the same titanium acetabular and femoral component and a ceramic femoral head. Serum metal levels were drawn pre-operatively then annually for a minimum of two years postoperatively. An a priori power analysis determined that 40 patients (20 per cohort) were needed to identify a clinically relevant difference in serum cobalt of 0.35 ng/ml (ppb) at 90% power. Forty-six patients were randomized to a modular dual-mobility (n=25) or conventional bearing (n=21) with 40 at a minimum follow-up of two years. No differences in serum cobalt (mean 0.14 ppb [range, 0.075–0.29] vs. 0.20 ppb [range, 0.075–0.57], p=0.39) or chromium levels (mean 0.14 ppb [range, 0.05–0.50] vs. 0.12 ppb [range, 0.05–0.35], p=0.65) were identified between the modular dual-mobility and conventional cohorts, respectively. There was no statistically significant difference in serum Co or Cr at two years postoperatively in subjects implanted with a ceramic head and this particular dual mobility bearing in comparison to a ceramic head and a conventional acetabular component. While modest expected elevations in serum Co and Cr were observed in the dual mobility group, in no case did the Co level exceed the laboratory reference range nor the threshold of one part per billion that has been associated with adverse local tissue reactions to mechanically-assisted crevice corrosion


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 45 - 45
7 Jun 2023
Howard D Manktelow B DeSteiger R Skinner J Ashford R
Full Access

Ceramic bearing fractures are rare events, but mandate revision and implantation of new bearings. Revisions using metal heads have been reported to lead to gross volumetric head wear (due to abrasive retained ceramic micro-debris), cobalt toxicity, multi-organ failure and death. Such complications are widely published (50+ reports), yet we know that patients continue to be put at risk. Using data from the NJR and AOANJRR, this study seeks to compare the risk of re-revision and death by revision bearing combination following a ceramic bearing fracture. Data were extracted from the NJR and AOANJRR, identifying revisions for ceramic bearing fracture. Subsequent outcomes of survival, re-revision and death were compared between revision bearing combinations (ceramic-on-ceramic, ceramic-on-polyethylene, and metal-on-polyethylene). 366 cases were available for analysis from the NJR dataset (MoP=34, CoP=112, CoC=221) and 174 from the AOANJRR dataset (MoP=17, CoP=44, CoC=113). The overall incidence rate of adverse outcome (revision or death) was 0.65 for metal heads and 0.23 for ceramic head articulations (p=0.0012) across the whole time period (NJR). Kaplan-Meir survival estimates demonstrate an increased risk of both re-revision and death where a metal head has been used vs a ceramic head following revision for ceramic fracture. There are few decisions in arthroplasty surgery that can lead to serious harm or death for our patients, but revision using a metal head following ceramic bearing fracture is one of them. This study enhances the signal of what is already known but previously only reported as inherently low-level evidence (case reports and small series) due to event rarity. Use of a metal head in revision for ceramic fracture represents an avoidable patient safety issue, which revision guidelines should seek to address


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 17 - 17
2 May 2024
Whitehouse M Patel R French J Beswick A Navvuga P Marques E Blom A Lenguerrand E
Full Access

Hip bearing surfaces materials are typically broadly reported in national registry (metal-on-polyethylene, ceramic-on-ceramic etc). We investigated the revision rates of primary total hip replacement (THR) reported in the National Joint Registry (NJR) by detailed types of bearing surfaces used. We analysed THR procedures across all orthopaedic units in England and Wales. Our analyses estimated all-cause and cause-specific revision rates. We identified primary THRs with heads and monobloc cups or modular acetabular component THRs with detailed head and shell/liner bearing material combinations. We used flexible parametric survival models to estimate adjusted hazard ratios (HR). A total of 1,026,481 primary THRs performed between 2003–2019 were included in the primary analysis (Monobloc cups: n=378,979 and Modular cups: n=647,502) with 20,869 (2%) of these primary THRs subsequently undergoing a revision episode (Monobloc: n=7,381 and Modular: n=13,488). Compared to implants with a cobalt chrome head and highly crosslinked polyethylene (HCLPE) cup, the overall risk of revision for monobloc acetabular implant was higher for patients with cobalt chrome or stainless steel head and non-HCLPE cup. The risk of revision was lower for patients with a delta ceramic head and HCLPE cup implant, at any post-operative period. Compared to patients with a cobalt chrome head and HCLPE liner primary THR, the overall risk of revision for modular acetabular implant varied non-constantly. THRs with a delta ceramic or oxidised zirconium head and HCLPE liner had a lower risk of revision throughout the entire post-operative period. The overall and indication-specific risk of prosthesis revision, at different time points following the initial implantation, is reduced for implants with a delta ceramic or oxidised zirconium head and a HCLPE liner/cup in reference to THRs with a cobalt chrome head and HCLPE liner/cup


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 41 - 41
1 Apr 2022
Holleyman R Petheram T Reed M Burton P Malviya A
Full Access

Modular femoral stems offer surgeons great flexibility in biomechanical configuration during total hip replacement (THR) however introduce a taper-trunnion articulation known to be a source of additional wear debris through crevice, fretting and galvanic corrosion with mixed material combinations. This study aimed to investigate the influence of the trunnion bearing surface combination on the revision rate following primary total hip replacement (THR). All patients who underwent THR using an Exeter V40 cemented stainless steel stem and monobloc cemented polyethylene acetabular component (uncemented cups excluded to standardise the acetabular bearing surface and fixation) between January 2003 and December 2019 were extracted from the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. The primary exposure was the head substrate used corresponding to the trunnion bearing. Time-to-event was determined by duration of implantation from primary surgery to revision with cases censored at death or end of available follow-up. Multivariable Cox proportional hazard models were used to identify predictors of all cause revision, adjusted for age, sex, American Association of Anaesthesiologists (ASA) grade, body mass index, surgical indication (osteoarthritis or other), and femoral head size. 229,870 THR were identified (66% female, mean age 73.4 years (SD 9.1) with the majority (91%) performed for osteoarthritis of which 4,598 were revised. Mean time from primary to revision or censoring was 6.8 years (SD 4.0). Multivariable modelling showed CoCr/SS trunnions were associated with a significantly higher risk of revision (hazard ratio (HR) 1.31 (95%CI 1.15 to 1.48, p<0.0001) as compared to SS/SS (reference). Both Alumina/SS (HR 0.74 (0.65 to 0.84), p<0.0001) and Zirconia/SS (HR 0.61 (0.49 to 0.74), p<0.0001) were associated with a significantly lower risk of revision. Ceramic heads on an Exeter stem were associated with significantly improved survivorship compared to metal heads in primary THR. CoCr/SS trunnion articulations had the poorest survivorship which may be contributed to by trunnionosis


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1012 - 1019
1 Aug 2017
Howard DP Wall PDH Fernandez MA Parsons H Howard PW

Aims. Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used, but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle of Man. Patients and Methods. We analysed data on 223 362 bearings from 111 681 primary CoC THAs and 182 linked revisions for bearing fracture recorded in the NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. Results. A total of 222 852 bearings (99.8%) were CeramTec Biolox products. Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80 170 (0.126%) Biolox Delta liners and 35 of 31 258 (0.112%) Biolox Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (chi-squared 68.0, p < 0.001). The highest fracture risk was observed in the 28 mm Biolox Forte subgroup (0.382%). There were no fractures in the 40 mm head group for either ceramic type. Liner thickness was not predictive of fracture (p = 0.67). Body mass index (BMI) was independently associated with revision for both head fractures (odds ratio (OR) 1.09 per unit increase, p = 0.031) and liner fractures (OR 1.06 per unit increase, p = 0.006). . Conclusions. We report the largest independent study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low but previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture. Cite this article: Bone Joint J 2017;99-B:1012–19


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 105 - 111
1 Jul 2020
Engh, Jr. CA McAsey CJ Cororaton AD Ho H Hopper, Jr. RH

Aims. The purpose of this study is to examine six types of bearing surfaces implanted at a single institution over three decades to determine whether the reasons for revision vary among the groups and how long it takes to identify differences in survival. Methods. We considered six cohorts that included a total of 1,707 primary hips done between 1982 and 2010. These included 223 conventional polyethylene sterilized with γ irradiation in air (CPE-GA), 114 conventional polyethylene sterilized with gas plasma (CPE-GP), 116 crosslinked polyethylene (XLPE), 1,083 metal-on-metal (MOM), 90 ceramic-on-ceramic (COC), and 81 surface arthroplasties (SAs). With the exception of the COC, all other groups used cobalt-chromium (CoCr) femoral heads. The mean follow-up was 10 (0.008 to 35) years. Descriptive statistics with revisions per 100 component years (re/100 yr) and survival analysis with revision for any reason as the endpoint were used to compare bearing surfaces. Results. XLPE liners demonstrated a lower cumulative incidence of revision at 15 years compared to the CPE-GA and CPE-GP groups owing to the absence of wear-related revisions (4% for XLPE vs 18%, p = 0.02, and 15%, p = 0.003, respectively). Revisions for adverse local tissue reactions occurred exclusively among the MOM (0.8 re/100 year) and SA groups (0.1 re/100 year). The revision rate for instability was lower among hips with 36 mm and larger head sizes compared to smaller head sizes (0.2% vs 2%, p < 0.001). Conclusion. The introduction of XLPE has eliminated wear-related revisions through 15-year follow-up compared to CPE-GP and CPE-GA. Dislocation incidence has been reduced with the introduction of larger diameter heads but remains a persistent concern. The potential for adverse local tissue reactions with MOM requires continued follow-up. Cite this article: Bone Joint J 2020;102-B(7 Supple B):105–111


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 63 - 63
1 Oct 2019
Engh CA McAsey CJ Cororaton A Ho H Hopper RH
Full Access

Introduction. Prior to the introduction of alternative bearing surfaces, patients were typically counseled to expect that their total hip arthroplasty (THA) using conventional polyethylene would last for 10 years. With the introduction of crosslinked polyethylene and hard-on-hard bearing surfaces, revisions related to bearing surface wear were expected to decrease. We examined six different bearing surfaces used at our institution over three decades to evaluate how the overall survivorship, reasons for revision and Harris Hip Scores have changed with time. Methods. We identified six cohorts of patients with 754 primary hips done between 1983 and 2007. With the exception of 81 Birmingham hip resurfacings (BHR), all femoral components were straight, extensively porous-coated cylindrical (EPC) stems (AML and Prodigy). All cups were porous coated. In addition to the BHRs, the bearing surfaces included 223 conventional polyethylene (CPE) in a non-modular shell, 114 CPE in a modular shell, 116 crosslinked polyethylene (XLPE), 130 metal-on-metal (MOM), and 90 ceramic-on-ceramic (COC). The mean follow-up for all hip replacements is 13.0±6.0 years. Kaplan-Meier survivorship using revision for any reason as an endpoint with log rank testing was used to evaluate differences among groups. Results. Although there were no differences in survivorship at 10-year follow-up among the groups (p=0.53), the XLPE liners demonstrated improved survivorship at 15-years compared to both CPE groups owing to the absence of wear-related revisions (97% versus 83% for non-modular and 85% for modular cups respectively, p=0.001 and p=0.008). Revisions for femoral loosening have only occurred among 0.6% (4/673) of EPC stems. Revisions for cup loosening have occurred among 4% (10/223) of the non-modular cups but there are none among the other groups. The incidence of dislocation was reduced with the MOM, BHR and COC bearings that used 36-mm or larger femoral heads compared to the THAs that used 28-mm or 32-mm heads [1.1 % (3/261) versus 5.1% (25/493), p<0.01]. Infection has led to revision among 2 THAs with CPE in non-modular cups (0.9%), 2 MOM (1.5%), and 2 COC (2.2%). At 10-year follow-up, Harris Hip Scores tended to be higher among the BHRs compared to the other groups (92.1 versus 82.9, p<0.01). Discussion. The introduction of XLPE has eliminated wear-related revisions through 15-year follow-up. Hard-on-hard bearing surfaces are performing relatively well but differences are not yet discernable compared to CPE. Dislocation incidence has been reduced with the introduction of larger diameter heads but remains a persistent concern. Infection continues to occur although the incidence remains low. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 61 - 61
19 Aug 2024
Whitehouse MR Patel R French J Beswick A Navvuga P Marques E Blom A Lenguerrand E
Full Access

We investigated the revision rates of primary total hip replacement (THR) reported in the National Joint Registry (NJR) by types of bearing surfaces used. We analysed THR procedures across all orthopaedic units in England and Wales. Our analyses estimated all-cause and cause-specific revision rates. We identified primary THRs with heads and monobloc cups or modular acetabular component THRs with head and shell/liner combinations. We used flexible parametric survival models to estimate adjusted hazard ratios (HR). A total of 1,026,481 primary THRs performed between 2003–2019 are included in the primary analysis (Monobloc: n=378,979 and Modular: n=647,502) with 20,869 (2%) of these primary THRs subsequently undergoing a revision episode (Monobloc: n=7,381 and Modular: n=13,488). Compared to implants with a cobalt chrome head and highly crosslinked polyethylene (HCLPE) cup, the all-cause risk of revision for monobloc acetabular implant was higher for patients with cobalt chrome or stainless steel head and non-HCLPE cup. The risk of revision was lower for patients with a delta ceramic head and HCLPE cup implant, at any post-operative period. Compared to patients with a cobalt chrome head and HCLPE liner primary THR, the all-cause risk of revision for modular acetabular implant varied non-constantly. THRs with a delta ceramic or oxidised zirconium head and HCLPE liner had a lower risk of revision throughout the entire post-operative period. The all-cause and indication-specific risk of prosthesis revision, at different time points following the initial implantation, is lower for implants with a delta ceramic or oxidised zirconium head and a HCLPE liner/cup than commonly used alternatives such as cobalt chrome heads and HCLPE liner/cup


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 29 - 29
1 May 2018
Hothi H Eskelinen A Henckel J Blunn G Skinner J Hart A
Full Access

Introduction. Numerous studies have reported on clinically significant volumes of material loss and corrosion at the head-stem junction of metal-on-metal (MOM) hips; less is understood about metal-on-polyethylene (MOP) hips. We compared the effect of bearing type (MOM vs MOP) on taper material loss for a hip system of a single design (DePuy Pinnacle). Methods. We recruited retrieved MOM (n=30) and MOP (n=22) bearing hips that were consecutively received at our centre. We prospectively collected associated clinical and imaging data. We measured the severity of corrosion and volumes of material loss at each head taper surface and used multivariate statistical analysis to investigate differences between the two bearing types. Results. The median rate of material loss for the MOM and MOP groups was 0.81 mm. 3. /year (0.01–3.45) and 0.03 mm. 3. /year (0–1.07) respectively (p<0.001). 29 out of 30 MOM hips were revised for adverse metal reactions, compared with 1 out of 22 MOP hips. Discussion. MOP hips lost significantly less material from their taper junctions than MOM hips. We suggest that the metal-metal interaction at the bearing surface of MOM hips enhances the corrosive environment at the head-stem junction. Conclusion. Our results can reassure patients with MOP Pinnacle hips that they are unlikely to experience clinically significant problems related to material loss from the taper junction


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 24 - 24
1 Jan 2018
Heckmann N Sivasundaram L Stefl M Kang H Basler E Lieberman J
Full Access

The bearing surface is the critical element in determining the longevity of a total hip arthroplasty. Over the past decade problems associated with bearing surfaces and modular femoral tapers have had an impact on surgeon selection of both acetabular liners and modular femoral heads. The purpose of this study was to analyse THA bearing surface trends from 2007 through 2014 using a large national database. A retrospective review of the Nationwide Inpatient Sample (NIS) database was conducted from 2007 to 2014. All patients who underwent a primary THA were identified using International Classification of Diseases, 9th edition (ICD-9) procedure codes. Bearing surface data was extracted by identifying patients with ICD-9 procedure modifier codes. Patient and hospital characteristics were recorded for each patient. Descriptive statistics were employed to characterise bearing surface trends for the following bearing surfaces: metal on polyethylene (MoP); ceramic on polyethylene (CoP); ceramic on ceramic (CoC) and metal on metal (MoM). Univariate analysis was performed to identify differences between the bearing surface groups. During the study period, 2,460,640 primary THA discharges were identified, of which 1,059,825 (43.1%) had bearing surface data available for further analysis. The breakdown of the bearing surfaces used for these THAs were as follows: MoP − 49.1% (496,713); CoP − 29.1% (307,907); CoC − 4.2% (44,823); and MoM − 19.9% (210,381). MoM utilization peaked in 2008 with 51,033 cases representing 40.1% of THAs implanted that year. The usage steadily declined and by 2014 there were only 6,600 MoM cases representing only 4.0% of the THAs. From 2007 to 2014, the use of CoP bearing surfaces increased from 11,482 discharges (11.1% of cases) in 2007, to 83,300 discharges (50.8% of cases) in 2014. CoP utilization surpassed MoP in 2014. MoP accounted for 54.7% of discharges in 2011 and just 42.1% in 2014. During the study period, MoM bearing surface usage declined precipitously, while CoP surpassed MoP as the most prevalent bearing surface used in total hip arthroplasty patients. These changes in bearing surface usage over time were clearly influenced by concerns regarding high failure rates associated with MoM articulations and reports of taper corrosion associated with modular metal femoral heads


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1298 - 1303
1 Oct 2017
Schouten R Malone AA Frampton CM Tiffen C Hooper G

Aims . The primary aim of this independent prospective randomised trial was to compare serum metal ion levels for ceramic-on-metal (CoM) and metal-on-metal (MoM) bearing surfaces in total hip arthroplasty (THA). Our one-year results demonstrated elevation in metal ion levels above baseline with no significant difference between the CoM and MoM groups. This paper reviews the five-year data. Patients and Methods. The implants used in each patient differed only in respect to the type of femoral head (ceramic or metal). At five-year follow-up of the 83 enrolled patients, data from 67 (36 CoM, 31 MoM) was available for comparison. Results. The mean serum cobalt (Co) and chromium (Cr) ion levels remained above baseline in both groups (CoM: Co 1.16 μg/l (0.41 to 14.67), Cr 1.05 μg/l (0.16 to 12.58); MoM: Co 2.93 μg/l (0.35 to 30.29), Cr 1.85 μg/l (0.36 to 17.00)) but the increase was significantly less in the CoM cohort (Co difference p = 0.001, Cr difference p = 0.002). These medium-term results, coupled with lower revision rates from national joint registries, suggest that the performance of CoM THA may be superior to that of MoM. . Conclusion. While both bearing combinations have since been withdrawn these results provide useful information for planning clinical surveillance of CoM THAs and warrants continued monitoring. Cite this article: Bone Joint J 2017;99-B:1298–1303


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 925 - 933
1 Jul 2016
Sidaginamale RP Joyce TJ Bowsher JG Lord JK Avery PJ Natu S Nargol AVF Langton DJ

Aims. We wished to investigate the influence of metal debris exposure on the subsequent immune response and resulting soft-tissue injury following metal-on-metal (MoM) hip arthroplasty. Some reports have suggested that debris generated from the head-neck taper junction is more destructive than equivalent doses from metal bearing surfaces. . Patients and Methods. We investigated the influence of the source and volume of metal debris on chromium (Cr) and cobalt (Co) concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated particle sizes in excised tissues using multiple regression analysis of prospectively collected data. A total of 199 explanted MoM hips (177 patients; 132 hips female) were analysed to determine rates of volumetric wear at the bearing surfaces and taper junctions. . Results. The statistical modelling suggested that a greater source contribution of metal debris from the taper junction was associated with smaller aggregated particle sizes in the local tissues and a relative reduction of Cr ion concentrations in the corresponding synovial fluid and blood samples. Metal debris generated from taper junctions appears to be of a different morphology, composition and therefore, potentially, immunogenicity to that generated from bearing surfaces. Conclusion. The differences in debris arising from the taper and the articulating surfaces may provide some understanding of the increased incidence of soft-tissue reactions reported in patients implanted with MoM total hip arthroplasties compared with patients with hip resurfacings. Cite this article: Bone Joint J 2016;98-B:925–33


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 66 - 66
1 Jan 2018
Muratoglu O Suhardi V Bichara D Freiberg A Rubash H Malchau H Oral E
Full Access

The gold standard for PJI treatment comprises the use of antibiotic-loaded bone cement spacers, which are limited in their load bearing capacity[1]. Thus, developing an antibiotic-eluting UHMWPE bearing surface can improve the mechanical properties of spacers and improve the quality of life of PJI patients. In this study, we incorporated vancomycin into UHMWPE to investigate its elution characteristics, mechanical properties and its efficacy against an acute PJI in an animal model. Vancomycin hydrochloride was incorporated into UHMWPE (2 to 14%) by blending and consolidation. We studied drug elution with blocks in PBS and UV-Vis spectroscopy at 280 nm. We determined the tensile mechanical properties and impact strength [3]. We implanted osteochondral plugs in rabbits using either control UHMWPE, bone cement (40g) containing vancomycin (1g) and tobramycin (3.6g) or vancomycin-eluting UHMWPE (n=5) plugs in the patellofemoral groove of rabbits. All rabbits received a beaded titanium rod in the tibial canal. All groups received two doses of 5×10. 7. cfu of bioluminescent S. aureus in the distal tibial canal prior to insertion of the rod and the articular space after closure of the joint capsule. No intravenous antibiotics were used. Bioluminescence signal was measured when the rabbits expired, or at 21-day post-op. Hardware, polyethylene implants, and joint tissues were sonicated to further quantify live bacteria via plate seeding. Vancomycin elution increased with increasing drug loading. Vancomycin elution above MIC for 3 weeks and optimized mechanical properties were obtained at 6–7 wt% vancomycin loading in UHMWPE. In our lapine acute infection model using bioluminescent S. aureus, knees treated with UHMWPE without antibiotics and bone cement containing vancomycin and tobramycin had significantly higher bioluminescence compared to those treated with vancomycin-eluting UHMWPE. These results suggest that an antibiotic-eluting UHMWPE spacer with acceptable properties as a bearing surface could be used to treat periprosthetic joint infection in lieu of bone cement spacers and this could allow safer load bearing and a higher quality of life for the patients during treatment. In addition, this presents a safer alternative in cases where the second stage surgery for the implantation of new components is hindered


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 844 - 851
1 Jul 2022
Rogmark C Nåtman J Jobory A Hailer NP Cnudde P

Aims

Patients with femoral neck fractures (FNFs) treated with total hip arthroplasty (THA) have an almost ten-fold increased risk of dislocation compared to patients undergoing elective THA. The surgical approach influences the risk of dislocation. To date, the influence of differing head sizes and dual-mobility components (DMCs) on the risk of dislocation has not been well studied.

Methods

In an observational cohort study on 8,031 FNF patients with THA between January 2005 and December 2014, Swedish Arthroplasty Register data were linked with the National Patient Register, recording the total dislocation rates at one year and revision rates at three years after surgery. The cumulative incidence of events was estimated using the Kaplan-Meier method. Cox multivariable regression models were fitted to calculate adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for the risk of dislocation, revision, or mortality, stratified by surgical approach.


Aim. To assess the effect of the bearing surface and head size on the survival of total hip replacements with modern bearing surface combinations. Methods. We combined the NJR dataset with polyethylene manufacturing properties as supplied by the manufacturers to sub-divide polyethylene into conventional (PE) and highly crosslinked (XLPE). Cause specific and overall reasons for revisions were analysed using Kaplan-Meier and multi-variate Cox proportional hazard regression survival analyses. The bearing surface analysis was repeated in patients undergoing THR under the age of 55. Results. A total of 337,786 primary THR cases were included with an associated 5,618 revisions. Head size was grouped in <= 28mm (group A), 32mm (group B) and >=36mm (group C). A Cox regression model adjusted for age, gender, bearing combination and stem fixation was used to provide Hazard Ratios (HR). With Group C as reference, revision for all causes in Group A had a HR 1.07 (95%CI 0.99, 1.15) and in Group B HR 0.92 (0.86, 0.98). In patients <55y of age, with MoP as reference, Hazard Ratio for MoXLPE was 0.77 (0.59, 1.01), CoC 0.64 (0.52, 0.78), CoXLPE 0.61 (0.47, 0.78), CoP 0.50 (0.36, 0.70) and CMoXLPE 0.47 (0.30, 0.76). Conclusion. When combined with modern bearing combinations, the use of femoral heads of 36mm or larger was associated with a decreased cumulative incidence of revision for dislocation and an increased incidence of revision for aseptic loosening. In patients under the age of 55, CMoXLPE performed best at maximum follow up of 11 years


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1448 - 1453
1 Nov 2009
Sexton SA Walter WL Jackson MP De Steiger R Stanford T

Dislocation is a common reason for revision following total hip replacement. This study investigated the relationship between the bearing surface and the risk of revision due to dislocation. It was based on 110 239 primary total hip replacements with a diagnosis of osteoarthritis collected by the Australian Orthopaedic Association National Joint Replacement Registry between September 1999 and December 2007. A total of 862 (0.78%) were revised because of dislocation. Ceramic-on-ceramic bearing surfaces had a lower risk of requiring revision due to dislocation than did metal-on-polyethylene and ceramic-on-polyethylene surfaces, with a follow-up of up to seven years. However, ceramic-on-ceramic implants were more likely to have larger prosthetic heads and to have been implanted in younger patients. The size of the head of the femoral component and age are known to be independent predictors of dislocation. Therefore, the outcomes were stratified by the size of the head and age. There is a significantly higher rate of revision for dislocation in ceramic-on-ceramic bearing surfaces than in metal-on-polyethylene implants when smaller sizes (≤ 28 mm) of the head were used in younger patients (< 65 years) (hazard ratio = 1.53, p = 0.041) and also with larger (> 28 mm) and in older patients (≥ 65 years) (hazard ratio = 1.73, p = 0.016)