Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 85 - 85
1 Mar 2021
Chia DT Sibbel J Edwards D Melton J
Full Access

Revision anterior cruciate ligament (ACL) reconstruction is a technically demanding procedure, reporting poorer outcomes compared to the primary procedure. Identification of the cause of primary failure and a thorough pre-operative evaluation is required to plan the most appropriate surgical approach. 3D printing technology has become increasingly commonplace in the surgical setting. In particular, patient-specific anatomical models can be used to aid pre-operative planning of complicated procedures. We have conducted a qualitative study to gauge the interest amongst orthopaedic knee surgeons in using a 3D-printed model to plan revision ACL reconstructions. A tibia and femur model was printed from one patient who is a candidate for the procedure. The binder jetting printing technique was performed, using Visijet PXL Core powder. 12 orthopaedic knee surgeons assessed the usefulness of the 3D-printed model compared to conventional CT images on a likert scale. 6 key steps of preoperative planning were assessed, including the size and location of the tunnel defects, the need for notchplasty, and whether a staged revision was required. We found that surgeons preferred the 3D-printed model to conventional CT images only, and 83% of them would use such a model for both pre-operative simulation, and as an intra-operative reference. However, there were some variation in the perceived usefulness of the model in several areas assessed. This may reflect differences in individual approach towards planning of the procedure. Our findings suggest that 3D-printed models could be a versatile pre-operative and intra-operative tool for complicated arthroscopic knee surgery. While 3D printing technology is becoming increasingly accessible and affordable, in-depth cost-effectiveness studies need to be conducted before it can be integrated into clinical. Further study would be needed to determine the clinical utility and economic cost-effectiveness of the 3D-printed model in revision ACL reconstruction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 89 - 89
1 Jul 2014
Arntz P Kuhli M Reimers N Steckel H
Full Access

Summary Statement. This work features a new approach to overcome drawbacks of commercial calcium phosphate cements in terms of application by on-site preparation and bone ingrowth by introduction of macropores in the material using a hydrofluoroalkane based aerosol foam. Introduction. The application of calcium phosphate bone cements (CPCs) into a void for example of an osteoporotic bone is very difficult as the cement paste is made outside the application site and subsequently applied into the damaged bone. A common drawback of especially apatitic cements is a very low resorption rate due to small pore size Therefore different approaches have been described to add macropores into the cement. 2. , leading to bone ingrowth and tissue penetration. The aim of this project is the use of two separate formulations in pressurised systems – a suspension and an emulsion – which can be mixed in a specially developed device and can be applied easily and efficiently into a bone directly during surgery leading to a self-hardening macro porous CPC foam. The intention is to fill voids in osteoporotic bones to ensure stability for implants like e.g. screws for femur neck fractures. An increased stability for implants can allow the possibility of a less invasive femur neck preserving therapy in contrast to a femur neck replacement. Other indications for such foam (i.e. kyphoplasty) are under evaluation. Methods. As suggested above two separate formulations for the components are developed to prevent premature hardening. Hydrofluoroalkanes were preferred as propellants to propane, butane or isobutane, due to their superior safety profile. The hardener component was formulated as propellant-in-water emulsion. Several parentally approved emulsifiers (e.g. Poloxamer 188) were tested in view of solubility at the given salt and binder concentration. The stability of resulting emulsions in pressurised containers, the corresponding foams as well as the foam expansion volume was analyzed. Porous hydroxyapatite is formed after addition of tetra-calciumphosphate, di-calciumphosphate dihydrate and tri-sodiumcitrat dehydrate incorporated in the suspension component. To overcome quick sedimentation of these solids, particle size was reduced by dry or non-aqueous wet milling, respectively. Changes in particle size distribution and enthalpy changes during processes were analyzed. Hardening properties of both components were tested particularly with regard to compressive strength. In order to apply the components, a suitable application system was developed and the hardened product analyzed using x-ray diffraction. Results. The optimised Ca. 2+. /(PO. 4. ). 3−. component is a submicron-sized suspension in a mixture of ethanol and HFA 134a. The development of the suspension led to new knowledge with regard to milling effects on the Ca. 2+. /(PO. 4. ). 3−. components. The optimised hardener component contains an aqueous solution of sodium phosphates, Povidone 90 and Poloxamer 188 emulsified in HFA 227. Both components are formulated in pressurised cans. Discussion/Conclusion. A two component bone foam for stabilisation in osteoporotic bones including a new mixing / application system, which allows actuation of the components and leads to a hardening process that results in hydroxyapatite in a suitable test setup, was developed. The new application system. Further steps i.e. proof of concept (in-vitro and in-vivo) are being taken


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 960 - 966
1 Jul 2006
Pluhar GE Turner AS Pierce AR Toth CA Wheeler DL

Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p > 0.05), yet material properties were inferior (p < 0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.