Direct metal printed (DMP) porous iron implants possess promising mechanical and corrosion properties for various clinical application. Nevertheless, there is a requirement for better co-relation between in vitro and in vivo corrosion and biocompatibility behaviour of such biomaterials. Our present study evaluates absorption of porous iron implants under both static and dynamic conditions. Furthermore, this study characterizes their cytocompatibility using fibroblastic, osteogenic, endothelial and macrophagic cell types. In vitro degradation was performed statically and dynamically in a custom-built set-up placed under cell culture conditions (37 °C, 5% CO2 and 20% O2) for 28 days. The morphology and composition of the degradation products were analysed by scanning electron microscopy (SEM, JSM-IT100, JEOL). Iron implants before and after immersion were imaged by μCT (Quantum FX, Perkin Elmer, USA).
Summary Statement. A novel biomimetic polydioxanone tendon patch with woven and electrospun components is biocompatible, recapitulates native tendon architecture and creates a tissue-healing microenvironment directed by a subpopulation of regenerative macrophages. The woven component provides tensile strength while the tendon heals. Introduction. There is great interest in the use of biomimetic devices to augment tendon repairs. Ideally, implants improve healing without causing adverse local or systemic reactions.
Summary Statement. Innovative nanocomposite carbon coating doped with Si can significantly improve the osseintegration of orthopaedics implants. Additionally, this kind of coating increases the mechanical resistance of the implants, what is especially important on case of joints (frictional pairs). Introduction. Use of layers of carbon-doped silicon, which leads to the synthesis of layers improving mechanical and biological characteristics, let obtain good strength by volume features. Suitable introduction to the structure of amorphous silicon dioxide layer allow for the production of higher adhesion to metallic substrates and consequently the increased thickness and hardness. The increased thickness of the layer leads to a stronger diffusion barrier to harmful metal ions from the implant material and thus consequently improving the biocompatibility of the implant. Moreover, a silicon beneficial effect on stress relaxation layer formed during the synthesis. This allows for improved biocompatibility, also affects other property obtained in the case of silicon carbide layers, the bacteriastability. This further protects the surface of the implant against the risk of bacterial colonization in both the implantation and subsequent use in the body, and preferably suppressing inflammation and faster healing of surgical wounds. The thus obtained product is much better than the biological and mechanical parameters of currently offered. Patients & Methods. In order to evaluate the fabricated coatings conditions examination of the basic physicochemical and mechanical properties were conducted (AFM, Raman, XPS, nanoindentation technique). The in vitro and in vivo tests were also conducted. As a biological material osteoblast Saos-2 cells and endothelial cells line EA. 926 were used. For the evaluation of proliferation and cytotoxicity a “live/dead” test was used. For testing bactericidal activity of the C/Si coatings, an exponential growth phase of E. coli strain DH5 α was used. Test of bacterial immediate toxicity and bacterial colonization were performed. A model of rabbits and guinea pigs were used to obtained results with reference to irritation, intradermal reactivity, sensitization, local effects after implantation with the histopathological examination, cytotoxicity test. Results. XPS results have shown that the silicon content for each group of samples, both steel and titanium alloy is about 3, 4 and 5 percent. Increasing the concentration of silicon above 5% results in the weakening of the mechanical properties of the layer and lead to delamination of the sterilization process. Addition of silicon in the range of 3–5% does not negatively affect the mechanical and structural properties of the modified surface and from this point of view, all the criterion of strength. Performed studies confirmed very good mechanical properties of C/Si coatings. In vitro studies have indicated the optimal concentration of silicon in the coating, where the material is biocompatible and also has good antibacterial properties.
Bone fractures are highly observed clinical situation in orthopaedic treatments. In some cases, there might be non-union problems. Therefore, recent studies have focused on tissue engineering applications as alternative methods to replace surgical procedures. Various biopolymer based scaffolds are produced using different fabrication techniques for bone tissue engineering applications. In this study, hydroxyapatite (HAp) and loofah containing carboxymethyl chitosan (CMC) scaffolds were prepared. In this regard, first 4 ml of CMC solution, 0.02 g of hydroxyapatite (HAP) and 0.06 g of poly (ethylene glycol) diglycidyl ether (PEGDE) were mixed in an ultrasonic bath until the HAp powders were suspended. Next, 0.04 g of loofah was added to the suspension and with the help of PEGDE as the cross-linking agent, then, the mixture was allowed to cross-link at 40oC overnight. Finally, the three-dimensional, porous and sponge-like scaffolds were obtained after lyophilization (TELSTAR - LyoQuest −85) at 0.1 mbar and −25°C for 2 days. Morphologies, chemical structures and thermal properties of the scaffolds were characterized by scanning electron microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric differential thermal analysis (TGA/DTA), respectively. In addition, swelling behavior and mechanical properties of the scaffolds under compression loading were determined. In order to investigate biocompatibility of the scaffolds, WST-1 colorimetric assay at days 0, 1, 3, 5 and 7 was conducted by using human dermal fibroblast. Also, histological and morphological analysis were performed for cell attachment at day 7. In conclusion, the produced scaffolds showed no cytotoxic effect. Therefore, they can be considered as a candidate scaffold for bone tissue regeneration. Further studies will be performed by using bone marrow and periosteum derived mesenchymal stem cells with these scaffolds.
Because of its high strength and allowance for bone integration, Ti-6Al-4V is the most commonly used material for load bearing bone implants. Compared to conventional production methods, 3D printing Ti-6Al-4V introduces advantages as (near-) net-shape manufacturing of complex geometries, and optimization of utilization rate of the material. However, as result of the additively production procedure, microstructure and surface properties differ from those manufactured using conventional techniques. Therefore, the resulting mechanical properties and biocompatibility of the 3D printed Ti-6Al-4V are investigated in this study. First, it was aimed to reveal the tensile properties of the material and verify if these depend on build orientation. Second, it was determined which post process method provides the best osteoconductivity. Tensile specimens were designed and 3D printed using Selective Laser Melting (SLM) technique. Subsequently, specimens were heat treated and tensile properties were determined as described in ASTM E 8M-04. Cell culture discs were manufactured using the same production method. The influence of two different surface treatments (sand-blasting versus polishing) on osteoconductivity was analysed by a 30 day Introduction
Materials and methods
Additive manufacturing has led to numerous innovations in orthopaedic surgery: surgical guides; surface coatings/textures; and custom implants. Most contemporary implants are made from titanium alloy (Ti-6Al-4V). Despite being widely available industrially and clinically, there is little published information on the performance of this 3D printed material for orthopaedic devices with respect to regulatory approval. The aim of this study was to document the mechanical, chemical and biological properties of selective laser sintering (SLS) manufactured specimens following medical device (TOKA®, 3D Metal Printing LTD, UK) submission and review by the UK Medicines and Healthcare Products Regulatory Agency (MHRA). All specimens were additively manufactured in Ti-6Al-4V ELI (Renishaw plc, UK). Mechanical tests were performed according to ISO6892-1, ISO9585 and ISO12107 for tensile (n=10), bending (n=3) and fatigue (n=16) respectively (University of Bath, UK). Appropriate chemical characterisation and biological tests were selected according to recommendations in ISO10993 and conducted by external laboratories (Wickham Labs, UK; Lucideon, UK; Edwards Analytical, UK) in adherence with Good Lab Practise guidelines. A toxicological review was conducted on the findings (Bibra, UK).Abstract
Objectives
Methods
Since 2010, there has been a sharp decline in the use of metal-on-metal joint replacement devices due to adverse responses associated with the release of metal wear particles and ions in patients. Surface engineered coatings offer an innovative solution to this problem by covering metal implant surfaces with biocompatible and wear resistant materials. The present study tests the hypothesis whether surface engineered coatings can reduce the overall biological impact of a device by investigating recently introduced silicon nitride coatings for joint replacements. Biological responses of peripheral blood mononuclear cells (PBMNCs) to Si3N4 model particles, SiNx coating wear particles and CoCr wear particles were evaluated by testing cytotoxicity, inflammatory cytokine release, oxidative stress and genotoxicity. Clinically relevant wear particles were generated from SiNx-on-SiNx and CoCr-on-CoCr bearing combinations using a multidirectional pin-on-plate tribometer. All particles were heat treated at 180°C for 4 h to destroy endotoxin contamination. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep (Stemcell) and incubated with particles at various volumetric concentrations (0.5 to 100 µm3 particles/cell) for 24 h in 5% (v/v) CO2 at 37°C. After incubation, cell viability was measured using the ATPlite assay (Perkin Elmer); TNF-alpha release was measured by ELISA (Invitrogen); oxidative stress was measured using H2DCFDA (Abcam); and DNA damage was measured by comet assay (Tevigen). The results were expressed as mean ± 95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. No evidence of cytotoxicity, oxidative stress, TNF-alpha release, or DNA damage was observed for the silicon nitride particles at any of the doses. However, CoCr wear particles caused cytotoxicity, oxidative stress, TNF-alpha release and DNA damage in PBMNCs at high doses (50 µm3 particles per cell). This study has demonstrated the in-vitro biocompatibility of SiNx coatings with primary human monocytic cells. Therefore, surface engineered coatings have potential to significantly reduce the biological impact of metal components in future orthopaedic devices.
We implanted nails made of titanium (Ti6Al4V) and of two types of glass ceramic material (RKKP and AP40) into healthy and osteopenic rats. After two months, a histomorphometric analysis was performed and the affinity index calculated. In addition, osteoblasts from normal and osteopenic bone were cultured and the biomaterials were evaluated in vitro. In normal bone the rate of osseointegration was similar for all materials tested (p >
0.5) while in osteopenic bone AP40 did not osseointegrate (p >
0.0005). In vitro, no differences were observed for all biomaterials when cultured in normal bone-derived cells whereas in osteopenic-bone-derived cells there was a significant difference in some of the tested parameters when using AP40. Our findings suggest that osteopenic models may be used in vivo in the preclinical evaluation of orthopaedic biomaterials. We suggest that primary cell cultures from pathological models could be used as an experimental model in vitro.
Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.Objectives
Materials and Methods
Infection in orthopedics is a challenge, since it has high incidence (rates can be up to 15-20%, also depending on the surgical procedure and on comorbidities), interferes with osseointegration and brings severe complications to the patients and high societal burden. In particular, infection rates are high in oncologic surgery, when biomedical devices are used to fill bone gaps created to remove tumors. To increase osseointegration, calcium phosphates coatings are used. To prevent infection, metal- and mainly silver-based coatings are the most diffused option. However, traditional techniques present some drawbacks, including scarce adhesion to the substrate, detachments, and/or poor control over metal ions release, all leading to cytotoxicity and/or interfering with osteointegration. Since important cross-relations exist among infection, osseointegration and tumors, solutions capable of addressing all would be a breakthrough innovation in the field and could improve clinical practice. Here, for the first time, we propose the use antimicrobial silver-based nanostructured thin films to simultaneously discourage infection and bone metastases. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture. These characteristics, in turn, allow tuning silver release and avoid delamination, thus preventing toxicity. In addition, to mitigate interference with osseointegration, here silver composites with bone apatite are explored. Indeed, capability of bone apatite coatings to promote osseointegration had been previously demonstrated in vitro and in vivo. Here, antibacterial efficacy and biocompatibility of silver-based films are tested in vitro and in vivo. Finally, for the first time, a proof-of-concept of antitumor efficacy of the silver-based films is shown in vitro. Coatings are obtained by silver and silver-bone apatite composite targets. Both standard and custom-made (porous) vertebral titanium alloy prostheses are used as substrates. Films composition and morphology depending on the deposition parameters are investigated and optimized. Antibacterial efficacy of silver films is tested in vitro against gram+ and gram- species (E. coli, P. aeruginosa, S. aureus, E. faecalis), to determine the optimal coatings characteristics, by assessing reduction of bacterial viability, adhesion to substrate and biofilm formation.
Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2.
Introduction and Objective. Alveolar bone resorption following tooth extraction or periodontal disease compromises the bone volume required to ensure the stability of an implant. Guided bone regeneration (GBR) is one of the most attractive technique for restoring oral bone defects, where an occlusive membrane is positioned over the bone graft material, providing space maintenance required to seclude soft tissue infiltration and to promote bone regeneration. However, bone regeneration is in many cases impeded by a lack of an adequate tissue vascularization and/or by bacterial contamination. Using simultaneous spray coating of interacting species (SSCIS) process, a bone inspired coating made of calcium phosphate-chitosan-hyaluronic acid was built on one side of a nanofibrous GBR collagen membrane in order to improve its biological properties. Materials and Methods. First, the physicochemical characterizations of the resulting hybrid coating were performed by scanning electron microscopy, X-ray photoelectron, infrared spectroscopies and high-resolution transmission electron microscopy. Then human mesenchymal stem cells (MSCs) and human monocytes were cultured on those membranes.
Bone regenerative medicine aims at designing biomimetic biomaterials able to guide stem cells fate towards osteoblast lineage and prevent orthopaedic common pathogen adhesion. Owing to bone inorganic/organic composition, we herein report, using a versatile process based on simultaneous spray coating of interacting species, a calcium phosphate (CaP) / chitosan (CHI) / hyaluronic acid (HA) functionalized collagen membrane as a new strategy for bone regenerative medicine. Physicochemical characterizations of CaP-CHI-HA coating were performed by scanning electron microscopy, X-ray photoelectron and infrared spectroscopies and high-resolution transmission electron microscopy, revealing the formation of a thin coating mainly composed of non-stoichiometric crystalline hydroxyapatite dispersed into polymorphic organic film.
Hydrogels have been widely used for articular tissue engineering application, due to their controllable biodegradability and high water content mimicking the biological extracellular matrix. However, they often lack the mechanical support and signaling cues needed to properly guide cells. Graphene and its derivatives have recently emerged as promising materials due to their unique mechanical, physical, chemical proprieties [1]. Although not yet widely used for medical applications, preliminary works suggest that both structural and functional properties of polymeric substrates may be enhanced when combined with graphene oxide (GO) [2]. In this work, reinforced 3D GO/alginate (Alg) hydrogels have been realized and the opportunity of tuning hydrogels mechanical properties in relation to the required physiological needs has been investigated. After preparing GO nanosheets (Sigma Aldrich) aqueous suspension (1 mg/ml) by ultrasonic treatment, alginate (Manugel GMB, FMC Biopolymer) composite solutions were produced (0, 0.5, 2 wt% GO/Alg). Moulds of agarose (1% w/v in CaCl 0,1M) were prepared to allocate GO/Alg solutions and chemically cross-link gels via diffusion (2 hr. at 37 °C). GO/Alg hydrogels were characterized through optical/ AFM and FTIR analysis.
To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Bone marrow-derived, autologous MSCs were seeded on Objectives
Materials and Methods