Introduction. Non-union is agonising for patients, complex for surgeons and a costly burden to our healthcare service; as such, its management must be well defined. There is debate as to the requirements for the successful treatment of such patients, in particular, the need for additional
Introduction. According to American Joint Replacement Registry, particle mediated osteolysis represents 13 % of the knee revision surgeries performed in the United States. The comprehension of mechanical and wear properties of materials envisioned for TJR is a key step in product development. Furthermore, the maintenance of UHMWPE mechanical properties after material modification is an important aspect of material success. Initial studies conducted by our research group demonstrated that the incorporation of ibuprofen in UHMWPE had a minor impact on UHMWPE physicochemical and mechanical properties. Drug release was also evaluated and resulted in an interesting profile as a material to be used as an anti-inflammatory system. Therefore, the present study investigated the effect of drug release on the mechanical and
The ATTUNE™ Knee System (DePuy Synthes) comprises of a tibial insert that is made from AOX™, an antioxidant-stabilized polyethylene. The antioxidant used in AOX is pentaerythritol tetrakis [3-(3, 5-di-tertiary butyl-4-hydroxyphenyl)] propionate (PBHP). A
Modification of ordinary jig (angle guide) used for DCS fixation so as to make it more suitable for
Currently, different techniques to evaluate the biocompatibility of orthopaedic materials, including two-dimensional (2D) cell culture for metal/ceramic wear debris and floating 2D surfaces or three-dimensional (3D) agarose gels for UHMWPE wear debris, are used. Moreover, cell culture systems evaluate the
INTRODUCTION. Ultra-High Molecular Weight Polyethylene (UHMWPE) wear debris is thought to be a main factor in the development of osteolysis (1). However, the method for the evaluation of the
Background. In young patients with femoral neck non-union it is desirable to preserve the femoral head. The objective of this study was to assess the outcome results of revision internal fixation and nonvascular fibular bone grafting. Patients and Methods:. Ten patients with non united fracture neck femur were included in this prospective study. Fixation was done with two cancellous screws leaving behind a space between two screws for fibular strut graft. Assessment of union was done by both clinical and radiological criteria. Results:. union was achieved in 8 cases in an average time of 16 weeks (range 12–20 weeks). There was no infection, thromboembolic complications, donor site morbidity or implant failure in our series. Conclusion:. Nonvascularized fibular strut graft along with cancellous screws provides a
Osteoarthritis (OA) is a disease of the synovial joint with synovial inflammation, capsular contracture, articular cartilage degradation, subchondral sclerosis and osteophyte formation contributing to pain and disability. Transcriptomic datasets have identified genetic loci in hip and knee OA demonstrating joint specificity. A limited number of studies have directly investigated transcriptional changes in shoulder OA. Further, gene expression patterns of periarticular tissues in OA have not been thoroughly investigated. This prospective case control series details transcriptomic expression of shoulder OA by analysing periarticular tissues in patients undergoing shoulder replacement for OA as correlated with a validated patient reported outcome measure of shoulder function, an increasing (clinically worsening) QuickDASH score. We then compared transcriptomic expression profiles in capsular tissue biopsies from the OA group (N=6) as compared to patients undergoing shoulder stabilisation for recurrent instability (the control group, N=26). Results indicated that top ranked genes associated with increasing QuickDASH score across all tissues involved inflammation and response to stress, namely interleukins, chemokines, complement components, nuclear response factors and immediate early response genes. Some of these genes were upregulated, and some downregulated, suggestive of a state of flux between inflammatory and anti-inflammatory signalling pathways. We have also described gene expression pathways in shoulder OA not previously identified in hip and knee OA, as well as novel genes involved in shoulder OA.
Poly (vinyl alcohol) (PVA) hydrogel with high water content is one of the potential materials for artificial cartilage. In the previous study, the wear behavior of PVA hydrogel prepared by freeze-thawing (FT) method (PVA-FT gel) showed the excellent friction and wear property in simulated
4 years of follow-up study on 27 patients who had
Full thickness cartilage defects of the femoral condyles are frequent, can be highly symptomatic, and pose treatment challenges when encountered in middle-aged patients. A history of
Introduction. Damage development in cemented acetabular replacements has been studied in bovine pelvic bones under long-term physiological. 1. loading, albeit dry, conditions, using a specially designed hip simulator. 2. In this work we report further experimental results from testing in wet condition in a new custom designed environmental chamber. Damage was detected and monitored using mCT scanning at regular intervals of the experiments. Two dimensional projections in the axial, sagittal and coronal planes were extracted from the 3D data for fatigue damage identification. The simulated mechanical and
Trufit resorbable scaffolds, made of semiporous copolymer, are press-fit introduced in chondral defects of articular surfaces in order to promote filling and regeneration of damaged bone and cartilage tissues. In another previous work, we have presented our good and promising results obtanied at 1 yy follow-up. Then, we have had the chance to go on on follow-ups and check patients through second-look arthroscopies and serial MRI's: IKDC score showed 38 points improvement. WOMAC score showed statistically significant pain improvement in 89% of cases and function improvement in 86% of cases. Serial MRI's of the knees showed progressive incorporation of the synthetic plugs and no adverse inflammatory reaction. Second-look arthroscopies showed complete and flush fill of the defects and their resurfacing with hyaline-like tissue under different stages of maturation. Recently, we have been able to check, clinically and by serial MRI's, the first patients operated 24 months ago. Despite the mantainance of clinical very good results, as showed by other authors, MRI images showed a delayed
One of the serious postoperative complications associated with joint replacement is bacterial infection. In our recent investigations, iodine supported titanium implants demonstrated antibacterial activity in both Titanium rods were implanted in intramedullary rabbit femur models, in regard to the cementless hip stem. The implant rods were 5mm in diameter and 25mm in length. Half of the implants were treated with iodine (ID implants) and the other half were untreated (CL implants). The rods were inserted into the distal femur; ID implants into the right femur and CL implants into the left. We assessed the bonding strength by a measuring pull-out test at 4, 8, and 12 weeks after implantation. The bone-implant interfaces were evaluated at 4 weeks after implantation.Background
Methods
It is not known if the radiation sterilisation dose (RSD) of 25 kGy affects mechanical properties and biocompability of allograft bone by alteration of collagen triple helix or cross-links. Our aim was to investigate the mechanical and
Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft). The aim of this study was to investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft. A second stage of the experiment involved the addition of skeletal stem cells (SSC) to each of the milled polymers, impaction, 8 days incubation, and then tests for cell viability and number, via fluorostaining and biochemical (WST-1) assays.Aims
Methods
Introduction. Various biomaterials and bone graft substitute technologies for use in osteomyelitis treatment are currently used in clinal practice. They vary in mode of action (with or without antibiotics) and clinical application (one-stage or two-stage surgery). This systematic review aims to compare the clinical evidence of different synthetic antimicrobial bone graft substitutes and antibiotic-loaded carriers in eradicating infection and clinical outcome in patients with chronic osteomyelitis. Methods. Systematic review according to PRISMA statement on publications 2002-2023. MESH terms: osteomyelitis and bone substitutes. FREE terms: chronic osteomyelitis, bone infection. A standardized data extraction form was be used to extract data from the included papers. Results. Publications with increased methodological quality and clinical evidence for biomaterials in osteomyelitis treatment were published in the last decades. High 85-95% eradication rates of osteomyelitis were observed for various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass. Level of evidence varies significantly between products. Antibiotic pharmacokinetic release profiles vary between resorbable Ca-P and/or Ca-S biomaterials. Conclusion. Given the high 85-95% eradication rates of osteomyelitis by various resorbable Ca-P and/or Ca-S biomaterials combined with antibiotics and S53P4 bioactive glass, one-stage treatment is preferred. Surgeons should be aware of variations in mechanical properties and antibiotic pharmacokinetic release profiles between Ca-P and CA-s products. Mechanical,
Complex acetabular reconstruction for oncology and bone loss are challenging for surgeons due to their often hostile
Introduction. The presence of pluripotent mesenchymal cells in the periosteum along with the growth factors produced or released following injury provides this tissue with an important role in bone healing. Utilising this property, vascularised periosteal flaps may increase the union rates in recalcitrant atrophic long bone non-union. The novel chimeric fibula-periosteal flap utilises the periosteum raised on an independent periosteal vessel, thus allowing the periosteum to be inset freely around the osteotomy site, improving bone biology. Materials & Methods. Ten patients, with established non-union, underwent fibula-periosteal chimeric flaps (2016–2022) at the Canniesburn Plastic Surgery Unit, UK. Preoperative CT angiography was performed to identify the periosteal branches. A case-control approach was used. Patients acted as their own controls, which obviated patient specific risks for non-union. One osteotomy site was covered by the chimeric periosteal flap and one without. In two patients both the osteotomies were covered using a long periosteal flap. Results. Union rate of 100% (11/11) was noted with periosteal flap osteotomies, versus those without flaps at 28.6% (2/7) (p = 0.0025). Time to union was also reduced in the periosteal flaps at 8.5 months versus 16.75 months in the control group (p = 0.023). Survival curves with a hazard ratio of 4.1, equating to a 4 times higher chance of union with periosteal flaps (log-rank p = 0.0016) was observed. Conclusions. The chimeric fibula-periosteal flap provides an option for atrophic recalcitrant non-unions where use of vascularised fibula graft alone may not provide an adequate
Introduction. Autologous fat grafting has favourable potential as a regenerative strategy and is the current gold-standard to repair large contour defects, as needed in breast reconstruction after mastectomy and traumatic soft tissue reconstruction. Clinically, there is a limit on the volume of lipoaspirate which can be utilised to repair a soft-tissue defect. Surgical complications are the result of poor structural fidelity of lipoaspirate and graft resorption as a filling material and are hindered further by poor graft vascularisation. This study aims to develop injectable lipoaspirate-derived adipose tissue grafts with enhanced