Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 62 - 62
1 Jan 2018
Muirhead-Allwood S Jeffers J
Full Access

The hip joint capsule passively restrains extreme range of motion protecting against impingement, dislocation and possibly edge loading. These functions would be advantageous following total hip arthroplasty (THA) however the degree of capsular excision, preservation and/or repair greatly varies between surgeons/approaches. Therefore, we asked: how does THA affect capsular ligamentous biomechanics? Which factors have the biggest influence?

For this laboratory based, cadaveric model, THA was performed through the acetabular medial wall, thus preserving the entire hip capsule. A previously published testing rig was used to measure capsular function by internally and externally rotating the hip in each of five hip positions (standing, sitting, gait heel strike, and two impingement risk positions, full flexion with adduction & extension with abduction). N=8 hips were tested both before and after THA allowing for repeated measurements between the native and replaced hip.

The ROM before the capsule engaged increased following THA (p<0.05), indicating reduced biomechanical function. Internal rotation was affected more than external rotation. Increasing neck length restored the ROM more towards the native condition. Increasing head size also had a small positive effect, but less than neck length.

Following THA, the capsular ligaments were no longer able to wrap around the smaller femoral head thereby limiting their ability to restrain excessive hip movement. The anterior capsule is affected less than the posterior, and may benefit from being preserved length. A repair to the posterior capsule should compensate for the reduced THA head size in order to restore function.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims

Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement.

Methods

We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims

It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion.

Methods

A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 2 - 2
1 May 2018
Pay L Kloskowska P Morrissey D
Full Access

Introduction

Femoroacetabular impingement (FAI) is a morphological hip joint deformity associated with pain and early degenerative changes. Cam-type FAI is prevalent in young male athletes. While biomechanical deficiencies (decreased hip muscle strength and range of motion (ROM)) have been associated with symptomatic cam-type FAI (sFAI), results have been conflicting and little is known about biomechanical characteristics during dynamic tasks.

Objectives

(1) Compare coronal-plane hip muscle strength, activation and joint rotation during movement tasks in sFAI hips against healthy controls. (2) Investigate the effect of hip internal rotation ROM (IR-ROM) on these outcomes.


Robotic assisted surgery aims to reduce surgical errors in implant positioning and better restore native hip biomechanics compared to conventional techniques for total hip arthroplasty (THA). The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual THA versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, cup inclination, cup version, and leg-length correction.

This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. All operative procedures were undertaken by a single surgeon using the minimally-invasive posterior approach. Two independent blinded observers recoded all radiological outcomes of interest using plain radiographs. Patients in both treatment groups were well-matched for age, gender, body mass index, laterality of surgery, and ASA scores.

Interclass correlation coefficient was 0.92 (95% CI: 0.84 – 0.95) for intra-observer agreement and 0.88 (95% CI: 0.82–0.94) for inter-observer agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p<0.001) and vertical (p<0.001) centres of rotation, and improved preservation of the patient's native combined offset (P<0.001) compared to conventional THA. Robotic THA improved accuracy in positioning of the acetabular cup within the combined safe zones of inclination and anteversion described by Lewinnek et al (p=0.02) and Callanan et al (p=0.01) compared to conventional THA (figures 1–2). There was no difference between the two treatment groups in achieving the planned leg-length correction (p=0.10).

Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular cup positioning within the safe zones of inclination and anteversion compared to conventional manual THA.

Robotic-arm assisted THA enables improved preservation of native hip biomechanics compared to conventional manual THA.

For any figures or tables, please contact authors directly: fsh@fareshaddad.net


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims

Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane.

Methods

Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation.


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims

Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre.

Methods

Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 148 - 156
1 Feb 2018
Pinheiro M Dobson CA Perry D Fagan MJ

Objectives

Legg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition.

Methods

Finite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 492 - 497
1 Apr 2015
Ike H Inaba Y Kobayashi N Yukizawa Y Hirata Y Tomioka M Saito T

In this study we used subject-specific finite element analysis to investigate the mechanical effects of rotational acetabular osteotomy (RAO) on the hip joint and analysed the correlation between various radiological measurements and mechanical stress in the hip joint.

We evaluated 13 hips in 12 patients (two men and ten women, mean age at surgery 32.0 years; 19 to 46) with developmental dysplasia of the hip (DDH) who were treated by RAO.

Subject-specific finite element models were constructed from CT data. The centre–edge (CE) angle, acetabular head index (AHI), acetabular angle and acetabular roof angle (ARA) were measured on anteroposterior pelvic radiographs taken before and after RAO. The relationship between equivalent stress in the hip joint and radiological measurements was analysed.

The equivalent stress in the acetabulum decreased from 4.1 MPa (2.7 to 6.5) pre-operatively to 2.8 MPa (1.8 to 3.6) post-operatively (p < 0.01). There was a moderate correlation between equivalent stress in the acetabulum and the radiological measurements: CE angle (R = –0.645, p < 0.01); AHI (R = –0.603, p < 0.01); acetabular angle (R = 0.484, p = 0.02); and ARA (R = 0.572, p < 0.01).

The equivalent stress in the acetabulum of patients with DDH decreased after RAO. Correction of the CE angle, AHI and ARA was considered to be important in reducing the mechanical stress in the hip joint.

Cite this article: Bone Joint J 2015;97-B:492–7.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective

In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations.

Methods

In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 53 - 56
1 Nov 2013
Su EP Barrack RL

Cementless femoral stems are currently preferred for total hip replacement (THR) in the United States. Improvements in stem design, instrumentation and surgical technique have made this technology highly successful, reproducible, and applicable to the vast majority of patients requiring a THR. However, there are ongoing developments in some aspects of stem design that influence clinical results, the incidence of complications and their inherent adaptability in accommodating the needs of individual patients. Here we examine some of these design features.

Cite this article: Bone Joint J 2013;95-B, Supple A:53–6.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 23 - 30
1 Jan 2013
Kiernan S Hermann KL Wagner P Ryd L Flivik G

Progressive retroversion of a cemented stem is predictive of early loosening and failure. We assessed the relationship between direct post-operative stem anteversion, measured with CT, and the resulting rotational stability, measured with repeated radiostereometric analysis over ten years. The study comprised 60 cemented total hip replacements using one of two types of matt collared stem with a rounded cross-section. The patients were divided into three groups depending on their measured post-operative anteversion (< 10°, 10° to 25°, >  25°). There was a strong correlation between direct post-operative anteversion and later posterior rotation. At one year the < 10° group showed significantly more progressive retroversion together with distal migration, and this persisted to the ten-year follow-up. In the < 10° group four of ten stems (40%) had been revised at ten years, and an additional two stems (20%) were radiologically loose. In the ‘normal’ (10° to 25°) anteversion group there was one revised (3%) and one loose stem (3%) of a total of 30 stems, and in the > 25° group one stem (5%) was revised and another loose (5%) out of 20 stems. This poor outcome is partly dependent on the design of this prosthesis, but the results strongly suggest that the initial rotational position of cemented stems during surgery affects the subsequent progressive retroversion, subsidence and eventual loosening. The degree of retroversion may be sensitive to prosthetic design and stem size, but < 10° of anteversion appears deleterious to the long-term outcome for cemented hip prosthetic stems.

Cite this article: Bone Joint J 2013;95-B:23–30.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 82 - 82
23 Jun 2023
Halvorson RT Khattab K Ngwe H Ornowski J Akkaya Z Matthew RP Souza R Bird A Lotz J Vail TP Bailey JF
Full Access

Patients demonstrate distinct trajectories of recovery after THA. The purpose of this study was to assess the impact of adjacent muscle quality on postoperative hip kinematics. We hypothesized that patients with better adjacent muscle quality (less fatty infiltration) would have greater early biomechanical improvement. Adults undergoing primary THA were recruited. Preoperative MRI was obtained and evaluated via Scoring Hip Osteoarthritis with MRI Scores (SHOMRI, Lee, 2015). Muscle quality was assessed by measuring fat fraction [FF] from water-fat sequences. Biomechanics were assessed preoperatively and six weeks postoperatively during a staggered stance sit-to-stand using the Kinematic Deviation Index (KDI, Halvorson, 2022). Spearman's rho was used to assess correlations between muscle quality and function. Ten adults (5M, 5F) were recruited (average age: 60.1, BMI: 23.79, SHOMRI: 40.6, KDI: 2.96). Nine underwent a direct anterior approach and one a posterior approach. Preoperatively, better biomechanical function was very strongly correlated with lower medius FF (rho=0.89), strongly correlated with lower FF in the minimus (rho=0.75) and tensor fascia lata (TFL) FF (rho=0.70), and weakly correlated with SHOMRI (rho=0.29). At six weeks, greater biomechanical improvement was strongly correlated with lower minimus FF (rho=0.63), moderately correlated with medius FF (rho=0.59), and weakly correlated with TFL FF (rho=0.26) and SHOMRI (rho=0.39). Lastly, medius FF was moderately correlated with SHOMRI (rho=0.42) with negligible correlations between SHOMRI and FF in the minimus and TFL. These findings suggest adjacent muscle quality may be related to postoperative function following THA, explaining some of the variability and supporting specialized muscle rehabilitation or regeneration therapy to improve outcomes


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims

In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading.

Methods

Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 68 - 76
1 Jun 2019
Jones CW Choi DS Sun P Chiu Y Lipman JD Lyman S Bostrom MPG Sculco PK

Aims

Custom flange acetabular components (CFACs) are a patient-specific option for addressing large acetabular defects at revision total hip arthroplasty (THA), but patient and implant characteristics that affect survivorship remain unknown. This study aimed to identify patient and design factors related to survivorship.

Patients and Methods

A retrospective review of 91 patients who underwent revision THA using 96 CFACs was undertaken, comparing features between radiologically failed and successful cases. Patient characteristics (demographic, clinical, and radiological) and implant features (design characteristics and intraoperative features) were collected. There were 74 women and 22 men; their mean age was 62 years (31 to 85). The mean follow-up was 24.9 months (sd 27.6; 0 to 116). Two sets of statistical analyses were performed: 1) univariate analyses (Pearson’s chi-squared and independent-samples Student’s t-tests) for each feature; and 2) bivariable logistic regressions using features identified from a random forest analysis.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 426 - 434
1 Apr 2019
Logishetty K van Arkel RJ Ng KCG Muirhead-Allwood SK Cobb JP Jeffers JRT

Aims

The hip’s capsular ligaments passively restrain extreme range of movement (ROM) by wrapping around the native femoral head/neck. We determined the effect of hip resurfacing arthroplasty (HRA), dual-mobility total hip arthroplasty (DM-THA), conventional THA, and surgical approach on ligament function.

Materials and Methods

Eight paired cadaveric hip joints were skeletonized but retained the hip capsule. Capsular ROM restraint during controlled internal rotation (IR) and external rotation (ER) was measured before and after HRA, DM-THA, and conventional THA, with a posterior (right hips) and anterior capsulotomy (left hips).


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1140 - 1146
1 Sep 2017
Shoji T Yamasaki T Izumi S Murakami H Mifuji K Sawa M Yasunaga Y Adachi N Ochi M

Aims

Our aim was to evaluate the radiographic characteristics of patients undergoing total hip arthroplasty (THA) for the potential of posterior bony impingement using CT simulations.

Patients and Methods

Virtual CT data from 112 patients who underwent THA were analysed. There were 40 men and 72 women. Their mean age was 59.1 years (41 to 76). Associations between radiographic characteristics and posterior bony impingement and the range of external rotation of the hip were evaluated. In addition, we investigated the effects of pelvic tilt and the neck/shaft angle and femoral offset on posterior bony impingement.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 780 - 785
1 Jun 2015
Baauw M van Hellemondt GG van Hooff ML Spruit M

We evaluated the accuracy with which a custom-made acetabular component could be positioned at revision arthroplasty of the hip in patients with a Paprosky type 3 acetabular defect.

A total of 16 patients with a Paprosky type 3 defect underwent revision surgery using a custom-made trabecular titanium implant. There were four men and 12 women with a median age of 67 years (48 to 79). The planned inclination (INCL), anteversion (AV), rotation and centre of rotation (COR) of the implant were compared with the post-operative position using CT scans.

A total of seven implants were malpositioned in one or more parameters: one with respect to INCL, three with respect to AV, four with respect to rotation and five with respect to the COR.

To the best of our knowledge, this is the first study in which CT data acquired for the pre-operative planning of a custom-made revision acetabular implant have been compared with CT data on the post-operative position. The results are encouraging.

Cite this article: Bone Joint J 2015; 97-B:780–5.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 442 - 448
1 Apr 2014
Feyen H Shimmin AJ

Many different lengths of stem are available for use in primary total hip replacement, and the morphology of the proximal femur varies greatly. The more recently developed shortened stems provide a distribution of stress which closely mimics that of the native femur. Shortening the femoral component potentially comes at the cost of decreased initial stability. Clinical studies on the performance of shortened cemented and cementless stems are promising, although long-term follow-up studies are lacking. We provide an overview of the current literature on the anatomical features of the proximal femur and the biomechanical aspects and clinical outcomes associated with the length of the femoral component in primary hip replacement, and suggest a classification system for the length of femoral stems.

Cite this article: Bone Joint J 2014;96-B:442-8.