Extracorporeal irradiation of an excised tumour-bearing
segment of bone followed by its re-implantation is a technique used
in bone sarcoma surgery for limb salvage when the bone is of reasonable
quality. There is no agreement among previous studies about the
dose of irradiation to be given: up to 300 Gy have been used. We investigated the influence of extracorporeal irradiation on
the elastic and viscoelastic properties of bone. Bone was harvested
from mature cattle and subdivided into 13 groups: 12 were exposed
to increasing levels of irradiation: one was not and was used as
a control. The specimens, once irradiated, underwent mechanical
testing in saline at 37°C. The mechanical properties of each group, including Young’s modulus,
storage modulus and loss modulus, were determined experimentally
and compared with the control group. There were insignificant changes in all of these mechanical properties
with an increasing level of irradiation. We conclude that the overall mechanical effect of high levels
of extracorporeal irradiation (300 Gy) on bone is negligible. Consequently
the dose can be maximised to reduce the risk of local tumour recurrence. Cite this article:
Introduction. The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear
The April 2024 Trauma Roundup360 looks at: The infra-acetabular screw in acetabular fracture surgery; Is skin traction helpful in patients with intertrochanteric hip fractures?; Reducing pain and improving function following hip fracture surgery; Are postoperative splints helpful following ankle fracture fixation?; Biomechanics of internal fixation in Hoffa fractures: a comparison of four different constructs; Dual-plate fixation of periprosthetic distal femur fractures; Do direct oral anticoagulants necessarily mean a delay to hip fracture surgery?; Plate or retrograde nail for low distal femur fractures?.
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.Aims
Methods
To draw a comparison of the pullout strengths of buttress thread, barb thread, and reverse buttress thread bone screws. Buttress thread, barb thread, and reverse buttress thread bone screws were inserted into synthetic cancellous bone blocks. Five screw-block constructs per group were tested to failure in an axial pullout test. The pullout strengths were calculated and compared. A finite element analysis (FEA) was performed to explore the underlying failure mechanisms. FEA models of the three different screw-bone constructs were developed. A pullout force of 250 N was applied to the screw head with a fixed bone model. The compressive and tensile strain contours of the midsagittal plane of the three bone models were plotted and compared.Aims
Methods
Background: The Hansson Twin Hook (HTH) is an alternative to the sliding hip screw in the treatment of trochanteric fractures. In osteoporotic
The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured.Aims
Methods
Aim: Nanoindentation is a technique, developed over the last 15 years which is now widely used in the materials science for probing the mechanical properties of thin films. The properties most commonly measured are Young’s modulus (E), and Hardness (H). One of the great advantages of the technique is its ability to probe a surface and map its properties on a spatially – resolved basis, often with a resolution of better than 1μm. Materials and methods: specimens from 5 lumbar vertebrae (L-4) were obtained from fresh, unembalmed human cadavers (2 males and 3 females), aged from 16 to 90 years. After carefully removing posterior elements and soft tissues, the vertebral bodies were cut to a thickness of 5mm and embedded in epoxy resin to provide support for the porous network. Then the samples were metallograpically polished to produce smooth testing surfaces and nanoindentation tests were conducted to measure Young’s modulus and hardness of individual trabeculae. Measurements were made in both longitudinal and transverse direction in relation to the longitudinal axes of the trabeculae. The indentation load – displacement data obtained in these tests were analyzed, using the method of Oliver and Pharr. Results: a total of 719 nanoindentations were produced in this research. A mean of 7–8 indentations were made in 103 separate trabeculae both in longitudinal and transverse direction. The mean Young’s modulus was found to be 13.7(2.5) Gpa, which is higher than the one obtained by classic micromechanical tests. There were no significant differences of elastic moduli among the longitudinal and the transverse directions of the trabeculae (13.8. Gpa and 13.5 Gpa, respectively). Conclusion: nanoindentation is a very promising technique for evaluating intrinsic mechanical properties of bone at sub-micro level of organization. It may have many applications and may contribute to the improvement of our knowledge concerning
Aims: evaluate the relationship between Singh index (SI), bone mineral density (BMD) examining bone mechanical properties from ex-vivo human femoral heads. Methods: we collected the femoral heads of 22 patients that underwent arthroplastic for fracture of femoral head under low energy trauma. 5 patients were male while 17 were female. In each patient a pelvis X-ray was performed to estimate Singh Index. From 2 to 3 bone cylinders of cancellous bone were obtained from each femoral head. 52 bone cylinders (7x10mm) were obtained. In each specimen densitometric scans were performed by means of a Hologic QDR 4500 X-ray densitometer, using a small animal software. The coefficient of variation (CV) was calculated by repositioning a sample for 5 scans by different operators. The data obtained were expressed as bone mineral content (BMC) and bone mineral density (BMD). Compression tests with a JJ Instruments T5K machine were conducted on 52 spongy bone cylinders. Each specimen was loaded in movement control; maximum failure load and Young modulus were recorded. Results The CV for the precision was 1.8% for BMC and 2.7% for BMD. There are no differences between males and females in age, BMC, BMD and Young modulus, while there is a significant difference in maximum load and SI. As regards SI values, there are significant differences among different categories of SI for age, sex, BMC, BMD, Young modulus and maximum failure load. Considering each sample position, namely 1, 2 or 3, there was no significant difference in densitometric parameters and in mechanical properties Statistical analyses of correlations by Pearson’s coefficient showed significant inverse correlations between age and mechanical bone properties (Young modulus and maximum failure load), while the correlations between BMC, BMD and
Periprosthetic fractures after total hip arthroplasty lead to considerable morbidity in terms of loss of component fixation, bone loss and subsequent functional compromise. The prevention, early recognition and appropriate management of such fractures are therefore critical. The pathogenesis of periprosthetic factors is multi-factorial. There are a number of intrinsic patient influences such as poor
Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality. An Objectives
Methods
Periprosthetic fractures in total hip arthroplasty lead to considerable morbidity in terms of loss of component fixation, bone loss and subsequent function. The prevention, early recognition and appropriate management of such fractures are therefore critical. The pathogenesis of periprosthetic factors is multi-factorial. There are a number of intrinsic patient influences such as
Since cementless stem fixation in hip arthroplasty is becoming more and more common, the overall incidence of intraoperative femoral fractures has risen considerably. Depending on primary or revision arthroplasty, literature reports fracture rates between a few percent up to one third of the cases. In this study, methods commonly applied in the field of structural testing were customized for this specified interference fit situation. A cementless hip system (ABG II, Stryker) was used on animal
This study tests the biomechanical properties of adjacent locked
plate constructs in a femur model using Sawbones. Previous studies
have described biomechanical behaviour related to inter-device distances.
We hypothesise that a smaller lateral inter-plate distance will
result in a biomechanically stronger construct, and that addition
of an anterior plate will increase the overall strength of the construct. Sawbones were plated laterally with two large-fragment locking
compression plates with inter-plate distances of 10 mm or 1 mm.
Small-fragment locking compression plates of 7-hole, 9-hole, and
11-hole sizes were placed anteriorly to span the inter-plate distance.
Four-point bend loading was applied, and the moment required to
displace the constructs by 10 mm was recorded.Objectives
Methods
In 1999, we developed a technique for biological
reconstruction after excision of a bone tumour, which involved using
autografts of the bone containing the tumour treated with liquid
nitrogen. We have previously reported the use of this technique
in 28 patients at a mean follow up of 27 months (10 to 54). In this study, we included 72 patients who underwent reconstruction
using this technique. A total of 33 patients died and three were
lost to follow-up, at a mean of 23 months (2 to 56) post-operatively,
leaving 36 patients available for a assessment at a mean of 101
months 16 to 163) post-operatively. The methods of reconstruction included
an osteo-articular graft in 16, an intercalary in 13 and, a composite
graft with prosthesis in seven. Post-operative function was excellent in 26 patients (72.2%),
good in seven (19.4%), and fair in three (8.3%) according to the
functional evaluation system of Enneking. No recurrent tumour occurred
within the grafts. The autografts survived in 29 patients (80.6%),
and the rates of survival at five and ten years were 86.1% and 80.6
%, respectively. Seven of 16 osteo-articular grafts (44%) failed
because of fracture or infection, but all the composite and intercalary
grafts survived. The long-term outcomes of frozen autografting, particularly using
composite and intercalary grafts, are satisfactory and thus represent
a good method of treatment for patients with a sarcoma of bone or
soft tissue. Cite this article:
One commonly used rat fracture model for bone and mineral research
is a closed mid-shaft femur fracture as described by Bonnarens in
1984. Initially, this model was believed to create very reproducible
fractures. However, there have been frequent reports of comminution
and varying rates of complication. Given the importance of precise
anticipation of those characteristics in laboratory research, we
aimed to precisely estimate the rate of comminution, its importance and
its effect on the amount of soft callus created. Furthermore, we
aimed to precisely report the rate of complications such as death
and infection. We tested a rat model of femoral fracture on 84 rats based on
Bonnarens’ original description. We used a proximal approach with
trochanterotomy to insert the pin, a drop tower to create the fracture
and a high-resolution fluoroscopic imager to detect the comminution.
We weighed the soft callus on day seven and compared the soft callus
parameters with the comminution status.Objectives
Methods
Fibrin glue, also known as fibrin sealant, is now established as a haemostatic agent in surgery, but its role in orthopaedic surgery is neither well known nor clearly defined. Although it was originally used over 100 years ago, concerns about transmission of disease meant that it fell from favour. It is also available as a slow-release drug delivery system and as a substrate for cellular growth and tissue engineering. Consequently, it has the potential to be used in a number of ways in orthopaedic surgery. The purpose of this review is to address its use in surgery of the knee in which it appears to offer great promise.
We describe a new method of stabilising a painful unstable sternoclavicular joint using the sternocleidomastoid tendon and passing it through the medial clavicle and onto the manubrium sternum. This method is simple, reproducible and avoids the potential risks of reefing the joint to the first rib. The technique was used in seven cases of sternoclavicular joint instability in six patients who were reviewed at a mean of 39.7 months (15 to 63). Instability was markedly reduced or eliminated in all cases, but in one there was occasional persistant subluxation. There were minor scar complications after two procedures and one patient had transient ulnar neuritis. This procedure provides satisfactory results in the medium term.