Periprosthetic fractures after total hip arthroplasty lead to considerable morbidity in terms of loss of component fixation, bone loss and subsequent functional compromise. The prevention, early recognition and appropriate management of such fractures are therefore critical. The pathogenesis of periprosthetic factors is multi-factorial. There are a number of intrinsic patient influences such as poor bone stock, biomechanics and compliance. There are also a host of extrinsic factors over which the surgeon has more control. The key tenets for fracture avoidance include careful planning, identifying the risk, choosing the correct implant, understanding the anatomy, and using appropriate surgical technique. There are a number of recognised risk factors for periprosthetic hip fractures The prevalence of intraoperative fractures during total hip arthroplasty is higher in the patient with osteopenia / osteoporosis. Other conditions causing increased bone fragility, such as osteomalacia, Paget's disease, osteopetrosis, and osteogenesis imperfecta are also at a higher risk of intraoperative fracture. The use of more and more press fit cementless components has also increased the number of periprosthetic femoral fractures because of the force required to obtain such a fit. Complex deformities of the proximal femur, particularly when associated with a narrow medullary canal, may also increase the risk of intraoperative fractures. Revision surgery is associated with a higher risk of intraoperative fracture than primary hip replacement surgery. These fractures typically occur during hip dislocation, cement extraction, or reaming through old cement. Other risk factors for postoperative femoral fractures following total hip replacement include loosening of the prosthesis with cortical bone loss, local osteolysis, stress risers within the cortex, such as old screw holes, the ends of plates, or impingement of a loose stem against the lateral femoral cortex. The management of periprosthetic fractures requires appropriate preoperative imaging, planning and templating, the availability of the necessary expertise and equipment, and knowledge of the potential pitfalls so that these can be avoided both intraoperatively and in follow-up. There is a danger that these cases fall between the expertise of the trauma surgeon and that of the revision arthroplasty surgeon. The past two decades have afforded us clear treatment algorithms based on fracture location, component fixation and the available bone stock. We still nevertheless face the enduring challenge of an elderly population with a high level of comorbidity who struggle to rehabilitate after such injuries. Perioperative optimization is critical as we have seen prolonged hospital stays, high rates of systemic complications and a significant short term mortality in this cohort. We have also been presented with new difficult fracture patterns around anatomic cementless stems and in relation to tapered cemented and cementless stems, as well as biologically challenging transverse or oblique fractures at the tip of a stem. In many cases, fixation techniques are biomechanically and biologically doomed to fail and intramedullary stability, achieved through complex revision is required. The sequelae of periprosthetic fractures include the financial cost of fixation or revision surgery, the associated morbidity and mortality in an elderly frail population, the difficulty with mobilization if the patient cannot fully weight bear, and a poor functional outcome in a proportion of cases. The battle over which patients or fractures require fixation and which require revision surgery continues