Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2021
Soltanihafshejani N Bitter T Janssen D Verdonschot N
Full Access

Introduction. The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation. Methods. Mechanical testing of human tibial trabecular bone was done under uniaxial and confined compression configurations. We examined 62 human trabecular bone samples taken from 8 different cadaveric tibiae to obtain all the required parameters defining the CFM, dependent on local bone mineral density (BMD). The derived constitutive rule was subsequently applied using an in-house subroutine to the FE models of the bone specimens, to compare the model predictions against the experimental results. Results. The crushable foam model provided an accurate simulation of the experimental compression test, and was able to replicate the ultimate compression strength measured in the experiments [Figure 1]. The CFM was able to simulate the post-failure behavior that was observed in the experimental specimens up to strain levels of 50% [Figure 2]. Also, the distribution of yield strains and permanent displacement was qualitatively very similar to the experimental deformation of the bone specimens [Figure 3]. Conclusion. The crushable foam model developed in the current study was able to accurately replicate the mechanical behavior of the human trabecular bone under compression loading beyond the yield point. This advanced bone model enables realistic simulations of the primary fixation of orthopaedic devices, allowing for the analysis of the influence of interference fit and frictional properties on implant stability. In addition, the model is suitable for failure analysis of reconstructions, such as the tibial collapse of total knee arthroplasty. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 20 - 20
1 Dec 2016
Haddad F
Full Access

Periprosthetic fractures after total hip arthroplasty lead to considerable morbidity in terms of loss of component fixation, bone loss and subsequent functional compromise. The prevention, early recognition and appropriate management of such fractures are therefore critical. The pathogenesis of periprosthetic factors is multi-factorial. There are a number of intrinsic patient influences such as poor bone stock, biomechanics and compliance. There are also a host of extrinsic factors over which the surgeon has more control. The key tenets for fracture avoidance include careful planning, identifying the risk, choosing the correct implant, understanding the anatomy, and using appropriate surgical technique. There are a number of recognised risk factors for periprosthetic hip fractures The prevalence of intraoperative fractures during total hip arthroplasty is higher in the patient with osteopenia / osteoporosis. Other conditions causing increased bone fragility, such as osteomalacia, Paget's disease, osteopetrosis, and osteogenesis imperfecta are also at a higher risk of intraoperative fracture. The use of more and more press fit cementless components has also increased the number of periprosthetic femoral fractures because of the force required to obtain such a fit. Complex deformities of the proximal femur, particularly when associated with a narrow medullary canal, may also increase the risk of intraoperative fractures. Revision surgery is associated with a higher risk of intraoperative fracture than primary hip replacement surgery. These fractures typically occur during hip dislocation, cement extraction, or reaming through old cement. Other risk factors for postoperative femoral fractures following total hip replacement include loosening of the prosthesis with cortical bone loss, local osteolysis, stress risers within the cortex, such as old screw holes, the ends of plates, or impingement of a loose stem against the lateral femoral cortex. The management of periprosthetic fractures requires appropriate preoperative imaging, planning and templating, the availability of the necessary expertise and equipment, and knowledge of the potential pitfalls so that these can be avoided both intraoperatively and in follow-up. There is a danger that these cases fall between the expertise of the trauma surgeon and that of the revision arthroplasty surgeon. The past two decades have afforded us clear treatment algorithms based on fracture location, component fixation and the available bone stock. We still nevertheless face the enduring challenge of an elderly population with a high level of comorbidity who struggle to rehabilitate after such injuries. Perioperative optimization is critical as we have seen prolonged hospital stays, high rates of systemic complications and a significant short term mortality in this cohort. We have also been presented with new difficult fracture patterns around anatomic cementless stems and in relation to tapered cemented and cementless stems, as well as biologically challenging transverse or oblique fractures at the tip of a stem. In many cases, fixation techniques are biomechanically and biologically doomed to fail and intramedullary stability, achieved through complex revision is required. The sequelae of periprosthetic fractures include the financial cost of fixation or revision surgery, the associated morbidity and mortality in an elderly frail population, the difficulty with mobilization if the patient cannot fully weight bear, and a poor functional outcome in a proportion of cases. The battle over which patients or fractures require fixation and which require revision surgery continues


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 19 - 19
1 May 2013
Haddad F
Full Access

Periprosthetic fractures in total hip arthroplasty lead to considerable morbidity in terms of loss of component fixation, bone loss and subsequent function. The prevention, early recognition and appropriate management of such fractures are therefore critical. The pathogenesis of periprosthetic factors is multi-factorial. There are a number of intrinsic patient influences such as bone stock, biomechanics and compliance. There are also a host of extrinsic factors over which the surgeon has more control. The prevention of periprosthetic fractures requires careful pre-operative planning and templating, the availability of the necessary expertise and equipment, and knowledge of the potential pitfalls so that these can be avoided both intra-operatively and in follow-up. The key issues here are around identifying the risk, choosing the correct implant, understanding the anatomy, understanding the possible risks and avoiding them and using appropriate technique. There are a number of recognized risk factors for periprosthetic hip fractures. The prevalence of intra-operative fractures during total hip arthroplasty is higher in the patient with osteopenia/osteoporosis. Other conditions causing increased bone fragility, such as osteomalacia, Paget's disease, osteopetrosis, and osteogenesis imperfecta are also at a higher risk of intra-operative fracture. The use of more and more press fit cementless components has also increased the number of periprosthetic femoral fractures because of the force required to obtain such a fit. Complex deformities of the proximal femur, particularly when associated with a narrow medullary canal, as seen in secondary degenerative joint disease following developmental dysplasia of the hip may also increase the risk of intra-operative fractures. Revision surgery is associated with a higher risk of intra-operative fracture than primary hip replacement surgery. These fractures typically occur during hip dislocation, cement extraction, or reaming through old cement. Other risk factors for post-operative femoral fractures include loosening of the prosthesis with cortical bone loss, local osteolysis, stress risers within the cortex, such as old screw holes, the ends of plates, or impingement of a loose stem against the lateral femoral cortex. Periprosthetic acetabular fractures are increasingly recognized. This is in part due to the popularity of press fit components, which increase fracture risk both at the time of insertion and later due to medial wall stress shielding and pelvic osteolysis, and partly due to the increasing frequency of severe defects encountered at the time of revision surgery. Both over- and under-reaming are significant risk factors for acetabular fractures during total hip replacement. It is imperative to deal with the osteopenic patient gently and appropriately, being aware of the rim on the acetabular side and having the capacity for screw fixation where needed, having an understanding of where you wish to place your components and creating the appropriate runways for them, thinking about the stability of an implant as it is inserted and understanding that an implant that is less stable than expected probably is associated with either a size mismatch, a fracture or an implant that will not sit properly probably requires more or a different direction of reaming rather than harder blows with a hammer. A typical example where extra care is required is the scenario of a fractured neck of femur that requires total hip arthroplasty. The virgin native acetabulum in a patient likely to have some bony deficiency may be more difficult to deal with as it has a higher fracture risk. Pre-operative templating helps to identify the correct entry point for preparation of the lateral runway for linear insertion of a femoral stem. If resistance is met during insertion, the situation should be re-appraised to ensure that the direction and level of the rasp and prosthesis are the same. This reduces the risk of varus/valgus positioning which increases the risk of intra- and post-operative fractures. It is also important to avoid a change of version during insertion of the prosthesis as this can lead to high stresses