Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 46 - 46
17 Nov 2023
Young M Birch N
Full Access

Abstract. Objective. This study assesses the prevalence of major and minor discordance between hip and spine T scores using Radiofrequency Echographic Multi-spectrometry (REMS). REMS is a novel technology that uses ultrasound and radiofrequency analysis to measure bone density and bone fragility at the hip and lumbar spine. The objective was to compare the results with the existing literature on Dual-Energy X-ray Absorptiometry (DEXA) the current “gold standard” for bone densitometry. REMS and DEXA have been shown to have similar diagnostic accuracy, however, REMS has less human input when carrying out the scan, therefore the rates of discordance might be expected to be lower than for DEXA. Discordance poses a risk of misclassification of patients’ bone health status, causing diagnostic ambiguity and potentially sub-optimal management decisions. Reduction of discordance rates therefore has the potential to significantly improve treatment and patient outcomes. Methods. Results from 1,855 patients who underwent REMS investigations between 2018 and 2022 were available. Minor discordance is defined as a difference of one World Health Organisation (WHO) diagnostic classification (Normal / Osteopenia or Osteopenia / Osteoporosis). Major discordance is defined as a difference of two WHO diagnostic classifications (Normal / Osteoporosis). The results were compared with reported DEXA discordance rates. Results. 1,732 individuals had both hip and spine T scores available for analysis. There were 267 cases of discordance. No instances of major discordance were observed. The minor discordance rate was 15.4%. 6.5% of the REMS scans with minor discordance showed > 1.0 standard deviation (SD) difference between the T scores of the hip and spine. 19.4% had differences of between 0.6 SD and 1.0 SD while 73.9% had ≤ 0.5 SD or less. In 24.5% of the cases of REMS discordance the hip T scores were greater than the spine and in 75.5% of cases the spine T score was greater than the hip. Conclusions. The current analysis is the largest of its kind. It demonstrates that REMS has an overall lower rate of discordance than reported DEXA rates. Major discordance rates with DEXA range from 2–17%, but REMS avoids many of the positioning problems and post-processing errors inherent in DEXA scanning, which might account for the absence of major discordance. Rates of minor discordance in DEXA scans range between 38–51%. The REMS minor discordance rate being much lower than these rates suggests that it has the potential to enhance diagnostic accuracy considerably. Most REMS discordance results showed ≤ 0.5 SD variance between the T scores of the two sites, indicating close correlation in the bone densitometry analysis. Most studies of DEXA discordant results confirm that spinal T scores are more often higher than at the hip. The REMS results concur with this observation. Considering the comparable accuracy rates that have been shown between REMS and DEXA, with its much lower discordance rate, REMS can potentially improve current medical practice and enhance patient care. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 84 - 84
1 Mar 2021
Mobasheri A
Full Access

Sarcopenia is a progressive and generalized skeletal muscle disorder that involves loss of muscle mass and function. It is associated with increased adverse outcomes including falls, functional decline, frailty and mortality and affects 65% of people over the age of 65 more than half of people aged 80 and above. The factors that cause and worsen sarcopenia are categorised into two groups. The primary aetiological factor is ageing and the secondary factors include disease, physical inactivity, and poor nutrition. Sarcopenia is considered to be ‘primary' (or age-related) when no other specific cause is evident. However, a number of ‘secondary' factors may be present in addition to ageing. Sarcopenia can occur secondary to a systemic or inflammatory disease, including malignancy and organ failure. Physical inactivity is one of the major contributors to the development of sarcopenia, whether due to a sedentary lifestyle or to disease related immobility or disability. Furthermore, sarcopenia can develop as a result of inadequate protein consumption. Biomarkers are objective and quantifiable characteristics of physiological and pathophysiological processes. Biomarkers can be used to predict the development of sarcopenia in older susceptible adults and enable early interventions that can reduce the risk of physical disability, the co-morbidities associated with the loss of muscle mass and the poor health outcomes that result from sarcopenia. Non-invasive imaging technologies can be used as biomarkers to detect loss of skeletal muscle mass in sarcopenia include bone densitometry, computed tomography, ultrasound and magnetic resonance imaging. However, imaging requires sophisticated and expensive equipment that is not available in a resource poor setting. Therefore, markers of skeletal muscle strength and fitness and soluble biochemical markers in blood may be used as alternative biomarkers. Studies on sarcopenia have identified numerous soluble biochemical biomarkers. These biomarkers can be divided into two groups: “muscle-specific” and “non-muscle-specific” biomarkers. Since sarcopenia is associated with rapid skeletal muscle wasting, the skeletal muscle-specific isoform of troponin T may be considerate a useful biomarker of sarcopenia, since high troponin levels in blood are an expression of muscle wasting. Peptides derived from collagen type VI turnover may be potential biomarkers of sarcopenia. We have recently conducted a systematic review to summarize the data from recent mass-spectrometry based proteomic studies of the secretome of skeletal muscle cells in response to disease, exercise or metabolic stress in order to identify the proteins involved in muscle breakdown. Developing robust in vitro models for the study of sarcopenia using primary muscle cells is a high priority as is exploiting the in vitro models to understand catabolic and inflammatory processes and molecular mechanisms involved in sarcopenia. Co-cultures with adipose-derived and other cells may be used to screen for small molecules and biologicals capable of inhibiting the catabolic and inflammatory pathways involved in sarcopenia. This presentation reviews recent progress in this area and outlines opportunities for future research on sarcopenia


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 54 - 54
1 Dec 2020
Kacmaz IE Egeli E Basa CD Zhamilov V
Full Access

Proximal femur fractures are common in the elderly population. The aim of this study was to determine the relationship between fracture type and proximal femoral geometric parameters. We retrospectively studied the electronic medical records of 85 elderly patients over 60 years of age who were admitted to the orthopedic department with hip fractures between January 2016 and January 2018 in a training and research hospital in Turkey. Age, fracture site, gender, implant type and proximal femoral geometry parameters (neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Patients with femoral neck fractures and femur intertrochanteric fractures were divided into two groups. The relationship between proximal femoral geometric parameters and fracture types was examined. SPSS 25.0 (IBM Corparation, Armonk, New York, United States) program was used to analyze the variables. Independent samples t test was used to compare the fracture types according to NSA, FHD, FND and FSD variables. A statistically significant difference was found in FSD (p=0,002) and age (p=0,019). FSD and age were found to be greater in intertrochanteric fractures than neck fractures. Gender, site, CEA, FNAL, HAL, NSA, FHD and FND parametres were not significantly different. In the literature, it is seen that different results have been reached in different studies. In a study conducted in the Chinese population, a significant difference was found between the two groups in NSA, CEA and FNAL measurements. In a study conducted in the Korean population, a significant difference was found only in NSA measurements. The FSD is generally associated with bone mineral densitometry in the literature and has been shown to be a risk factor for fracture formation. However, a study showing that there is a relationship between FSD and fracture type is not available in the literature. In this study; FSD was found to be higher in intertrochanteric fractures (p = 0.002). However, for the clinical significance of this difference, we think that larger patient series and biomechanical studies are needed


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 701 - 705
1 May 2007
Thiele OC Eckhardt C Linke B Schneider E Lill CA

We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft. A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r. 2. = 0.867, p < 0.01) and also between its thickness (r. 2. = 0.826, p < 0.01) and bone mineral density (r. 2. = 0.861, p < 0.01). There was no statistically significant correlation between the age of the donor and the pull-out force (p = 0.246), the cortical thickness (p = 0.199), the bone mineral density (p = 0.697) or the level of osteoporosis (p = 0.378). We conclude that the overall bone mass, the thickness and the bone mineral density of the cortical layer, are the main factors which affect the stability of a screw in human female osteoporotic cortical bone


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives

The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models.

Materials and Methods

A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination.

Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 253 - 257
1 Feb 2007
Seel EH Davies EM

We performed a biomechanical study to compare the augmentation of isolated fractured vertebral bodies using two different bone tamps. Compression fractures were created in 21 vertebral bodies harvested from red deer after determining their initial strength and stiffness, which was then assessed after standardised bipedicular vertebral augmentation using a balloon or an expandable polymer bone tamp.

The median strength and stiffness of the balloon bone tamp group was 6.71 kN (sd 2.71) and 1.885 kN/mm (sd 0.340), respectively, versus 7.36 kN (sd 3.43) and 1.882 kN/mm (sd 0.868) in the polymer bone tamp group. The strength and stiffness tended to be greater in the polymer bone tamp group than in the balloon bone tamp group, but this difference was not statistically significant (strength p > 0.8, and stiffness p = 0.4).