Advertisement for orthosearch.org.uk
Results 1 - 20 of 818
Results per page:
Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims. Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD. Methods. A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively. Results. We detected five, three, and seven candidate gut microbiota-related traits for L1-L4 BMD, total BMD, and femur BMD, respectively, such as genus Dialister (p = 0.004) for L1-L4 BMD, and genus Eisenbergiella (p = 0.046) for total BMD. We also detected two common gut microbiota-related traits shared by L1-L4 BMD, total BMD, and femur total BMD, including genus Escherichia Shigella and genus Lactococcus. Interaction analysis of BMD detected several genes that interacted with gut microbiota, such as phospholipase D1 (PLD1) and endomucin (EMCN) interacting with genus Dialister in total BMD, and COL12A1 and Discs Large MAGUK Scaffold Protein 2 (DLG2) interacting with genus Lactococcus in femur BMD. Conclusion. Our results suggest associations between gut microbiota and BMD, which will be helpful to further explore the regulation mechanism and intervention gut microbiota of BMD. Cite this article: Bone Joint Res 2021;10(11):734–741


Bone & Joint Research
Vol. 6, Issue 10 | Pages 584 - 589
1 Oct 2017
den Teuling J Pauwels B Janssen L Wyers C Janzing HMJ van den Bergh J Morrenhof JW

Objectives. The goal of this study is to investigate the relation between indicators of osteoporosis (i.e., bone mineral density (BMD), and Cortical Index (CI)) and the complexity of a fracture of the proximal humerus as a result of a low-energy trauma. Methods. A retrospective chart review of 168 patients (mean age 67.2 years, range 51 to 88.7) with a fracture of the proximal humerus between 2007 and 2011, whose BMD was assessed at the Fracture Liaison Service with Dual Energy X-ray Absorptiometry (DXA) measurements of the hip, femoral neck (FN) and/or lumbar spine (LS), and whose CI and complexity of fracture were assessed on plain anteroposterior radiographs of the proximal humerus. Results. No significant differences were found between simple and complex fractures of the proximal humerus in the BMD of the hip, FN or LS (all p > 0.3) or in the CI (p = 0.14). Only the body mass index was significantly higher in patients with a complex fracture compared with those with a simple fracture (26.9 vs 25.2; p = 0.05). Conclusion. There was no difference in BMD of the hip, FN, LS or CI of the proximal humerus in simple compared with complex fractures of the proximal humerus after a low-energy trauma. Factors other than the BMD and CI, for example body mass index, may play a more important role in the complexity of this fracture. Cite this article: J.W.A.M. den Teuling, B.S. Pauwels, L. Janssen, C.E. Wyers, H. M. J. Janzing, J.P.W. van den Bergh, J. W. Morrenhof. The Influence of bone mineral density and cortical index on the complexity of fractures of the proximal humerus. Bone Joint Res 2017;6:584–589. DOI: 10.1302/2046-3758.610.BJR-2017-0080


Bone & Joint Research
Vol. 13, Issue 12 | Pages 750 - 763
11 Dec 2024
Xie C Gong J Zheng C Zhang J Gao J Tian C Guo X Dai S Gao T

Aims. This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults. Methods. The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023. Results. The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC. Conclusion. This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC. Cite this article: Bone Joint Res 2024;13(12):750–763


Bone & Joint Research
Vol. 3, Issue 1 | Pages 14 - 19
1 Jan 2014
James SJ Mirza SB Culliford DJ Taylor PA Carr AJ Arden NK

Aims. Osteoporosis and abnormal bone metabolism may prove to be significant factors influencing the outcome of arthroplasty surgery, predisposing to complications of aseptic loosening and peri-prosthetic fracture. We aimed to investigate baseline bone mineral density (BMD) and bone turnover in patients about to undergo arthroplasty of the hip and knee. Methods. We prospectively measured bone mineral density of the hip and lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans in a cohort of 194 patients awaiting hip or knee arthroplasty. We also assessed bone turnover using urinary deoxypyridinoline (DPD), a type I collagen crosslink, normalised to creatinine. Results. The prevalence of DEXA proven hip osteoporosis (T-score ≤ -2.5) among hip and knee arthroplasty patients was found to be low at 2.8% (4 of 143). Spinal osteoporosis prevalence was higher at 6.9% (12 of 175). Sixty patients (42% (60 of 143)) had osteopenia or osteoporosis of either the hip or spine. The mean T-score for the hip was -0.34 (. sd. 1.23), which is within normal limits, and the mean hip Z-score was positive at 0.87 (. sd. 1.17), signifying higher-than-average BMD for age. The median urinary DPD/creatinine was raised in both female patients at 8.1 (interquartile range (IQR) 6.6 to 9.9) and male patients at 6.2 (IQR 4.8 to 7.5). Conclusions. Our results indicate hip and knee arthroplasty patients have higher BMD of the hip and spine compared with an age-matched general population, and a lower prevalence of osteoporosis. However, untreated osteoporotic patients are undergoing arthroplasty, which may negatively impact their outcome. Raised DPD levels suggest abnormal bone turnover, requiring further investigation. Cite this article: Bone Joint Res 2014;3:14–19


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 34 - 34
1 May 2016
Hayashi S Hashimoto S Kanzaki N Kuroda R Kurosaka M
Full Access

Purpose. The purpose of this study was to evaluate periprosthetic bone mineral density (BMD) changes around a cementless short tapered-wedge stem and determine correlations between BMD changes and various clinical factors, including daily activity, after total hip arthroplasty (THA) with a short tapered-wedge stem. Methods. The study included 65 patients (65 joints) who underwent THA with a TriLock stem. At baseline, and 6, 12, and 24 months postoperatively, BMDs of the seven Gruen zones were evaluated using dual-energy X-ray absorptiometry. Correlations were determined between BMD changes and clinical factors, including the Harris hip score, body mass index, University of California at Los Angeles (UCLA) activity rating score, age at surgery, and initial lumbar BMD. Results. Minimal BMD changes were noted in the distal femur (Gruen zones 3, 4, and 5). However, significant BMD loss was noted in zone 7 at each time point. BMD loss was also noted in zone 1 at 6 and 12 months postoperatively, but BMD recovered after 18 months. Significant positive correlations were noted between BMD changes and the UCLA activity rating score in zones 1, 6, and 7. Additionally, negative correlations were noted between BMD changes and initial spine BMD in zones 2 and 3. Table legends. Table 1 Background of the patients. Table 2 Bone mineral density changes (%) at 6, 12, and 24 months postoperatively in the seven Gruen zones. Columns represent mean ± standard deviation. ※indicates P < 0.05 compared with baseline bone mineral density. Table 3 Correlations between periprosthetic bone mineral density changes and clinical factors (the Harris hip score, body mass index, University of California at Los Angeles activity rating score, age at surgery, and initial lumbar bone mineral density) in the seven Gruen zones at 24 months postoperatively. Correlation coefficients and P-values are presented. Boldface indicates P < 0.05. Conclusion. Periprosthetic BMD was maintained in the proximal femur, especially Gruen zone 1, with a short tapered stem. Daily activity may reflect improvements in periprosthetic bone quality after THA with a short tapered stem; however, this stem is not recommended in patients with low bone quality. To view tables, please contact authors directly


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1480 - 1483
1 Nov 2013
Hooper GJ Gilchrist N Maxwell R March R Heard A Frampton C

We studied the bone mineral density (BMD) and the bone mineral content (BMC) of the proximal tibia in patients with a well-functioning uncemented Oxford medial compartment arthroplasty using the Lunar iDXA bone densitometer. Our hypothesis was that there would be decreased BMD and BMC adjacent to the tibial base plate and increased BMD and BMC at the tip of the keel. There were 79 consecutive patients (33 men, 46 women) with a mean age of 65 years (44 to 84) with a minimum two-year follow-up (mean 2.6 years (2.0 to 5.0)) after unilateral arthroplasty, who were scanned using a validated standard protocol where seven regions of interest (ROI) were examined and compared with the contralateral normal knee. All had well-functioning knees with a mean Oxford knee score of 43 (14 to 48) and mean Knee Society function score of 90 (20 to 100), showing a correlation with the increasing scores and higher BMC and BMD values in ROI 2 in the non-implanted knee relative to the implanted knee (p = 0.013 and p = 0.015, respectively). The absolute and percentage changes in BMD and BMC were decreased in all ROIs in the implanted knee compared with the non-implanted knee, but this did not reach statistical significance. Bone loss was markedly less than reported losses with total knee replacement. There was no significant association with side, although there was a tendency for the BMC to decrease with age in men. The BMC was less in the implanted side relative to the non-implanted side in men compared with women in ROI 2 (p = 0.027), ROI 3 (p = 0.049) and ROI 4 (p = 0.029). The uncemented Oxford medial compartment arthroplasty appears to allow relative preservation of the BMC and BMD of the proximal tibia, suggesting that the implant acts more physiologically than total knee replacement. Peri-prosthetic bone loss is an important factor in assessing long-term implant stability and survival, and the results of this study are encouraging for the long-term outcome of this arthroplasty. Cite this article: Bone Joint J 2013;95-B:1480–3


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 93 - 97
1 Jan 2012
Lee JH Lee J Park JW Shin YH

In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 606 - 613
1 May 2006
Abu-Rajab RB Watson WS Walker B Roberts J Gallacher SJ Meek RMD

We compared peri-prosthetic bone mineral density between identical cemented and cementless LCS rotating platform total knee arthroplasties. Two matched cohorts had dual energy x-ray absorptiometry scans two years post-operatively using a modified validated densitometric analysis protocol, to assess peri-prosthetic bone mineral density. The knee that was not operated on was also scanned to enable the calculation of a relative bone mineral density difference. Oxford Knee and American Knee Society scores were comparable in the two cohorts. Statistical analysis revealed no significant difference in absolute, or relative peri-prosthetic bone mineral density with respect to the method of fixation. However, the femoral peri-prosthetic bone mineral density and relative bone mineral density difference were significantly decreased, irrespective of the method of fixation, particularly in the anterior distal portion of the femur, with a mean reduction in relative bone mineral density difference of 27%. There was no difference in clinical outcome between the cemented and cementless LCS total knee arthroplasty. However, both produce stress-shielding around the femoral implants. This leads us to question the use of more expensive cementless total knee components


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1648 - 1653
1 Dec 2010
Cordingley R Kohan L Ben-Nissan B

The major advantage of hip resurfacing is the decreased amount of bone resection compared with a standard total hip replacement. Fracture of the femoral neck is the most common early complication and poor bone quality is a major risk factor. We undertook a prospective consecutive case control study examining the effect of bone mineral density changes in patients undergoing hip resurfacing surgery. A total of 423 patients were recruited with a mean age of 54 years (24 to 87). Recruitment for this study was dependent on pre-operative bilateral femoral bone mineral density results not being osteoporotic. The operated and non-operated hips were assessed. Bone mineral density studies were repeated over a two-year period. The results showed no significant deterioration in the bone mineral density in the superolateral region in the femoral neck, during that period. These findings were in the presence of a markedly increased level of physical activity, as measured by the short-form 36 health survey physical function score


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 772 - 775
1 Jun 2009
Wilson J Bonner TJ Head M Fordham J Brealey S Rangan A

Low-energy fractures of the proximal humerus indicate osteoporosis and it is important to direct treatment to this group of patients who are at high risk of further fracture. Data were prospectively collected from 79 patients (11 men, 68 women) with a mean age of 69 years (55 to 86) with fractures of the proximal humerus in order to determine if current guidelines on the measurement of the bone mineral density at the hip and lumbar spine were adequate to stratify the risk and to guide the treatment of osteoporosis. Bone mineral density measurements were made by dual-energy x-ray absorptiometry at the proximal femur, lumbar spine (L2-4) and contralateral distal radius, and the T-scores were generated for comparison. Data were also collected on the use of steroids, smoking, the use of alcohol, hand dominance and comorbidity. The mean T-score for the distal radius was −2.97 (. sd. 1.56) compared with −1.61 (. sd. 1.62) for the lumbar spine and −1.78 (. sd. 1.33) for the femur. There was a significant difference between the mean lumbar and radial T scores (1.36 (1.03 to 1.68); p < 0.001) and between the mean femoral and radial T-scores (1.18 (0.92 to 1.44); p < 0.001). The inclusion of all three sites in the determination of the T-score increased the sensitivity to 66% compared with that of 46% when only the proximal femur and lumbar spine were used. This difference between measurements in the upper limb compared with the axial skeleton and lower limb suggests that basing risk assessment and treatment on only the bone mineral density taken at the hip or lumbar spine may misrepresent the extent of osteoporosis in the upper limb and the subsequent risk of fracture at this site. The assessment of osteoporosis must include measurement of the bone mineral density at the distal radius to avoid underestimation of osteoporosis in the upper limb


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1118 - 1122
1 Aug 2010
Lee JS Suh KT Eun IS

Low bone mass and osteopenia have been described in the axial and peripheral skeleton of patients with adolescent idiopathic scoliosis (AIS). Recently, many studies have shown that gene polymorphism is related to osteoporosis. However, no studies have linked the association between IL6 gene polymorphism and bone mass in AIS. This study examined the association between bone mass and IL6 gene polymorphism in 198 girls with AIS. The polymorphisms of IL6-597 G→A, IL6-572 G→C and IL6-174 G→A and the bone mineral density in the lumbar spine and femoral neck were analysed and compared with their levels in healthy controls. The mean bone mineral density at both sites in patients with AIS was decreased compared with controls (p = 0.0022 and p = 0.0013, respectively). Comparison of genotype frequencies between AIS and healthy controls revealed a statistically significant difference in IL6-572 G→C polymorphism (p = 0.0305). There was a significant association between the IL6-572 G→C polymorphism and bone mineral density in the lumbar spine, with the CC genotype significantly higher with the GC (p = 0.0124) or GG (p = 0.0066) genotypes. These results suggest that the IL6-572 G→C polymorphism is associated with bone mineral density in the lumbar spine in Korean girls with AIS


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1438 - 1440
1 Nov 2006
Niimi R Sudo A Hasegawa M Fukuda A Uchida A

Transient osteoporosis of the hip is a disorder characterised by pain, and associated with temporary osteopaenia. Although osteopaenia is the essence of the condition, data do not exist about the local bone density of the femoral neck if no medication is administered. We describe three patients who were treated with limitation of weight-bearing only. Repeated bone mineral density measurements were obtained, and that at the femoral neck was lowest two months after the onset of the condition. The mean reduction in bone mineral density when compared with an age-matched control group was 13% (3% to 24%). Spontaneous recovery was observed in all patients


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 10 - 10
1 Jan 2011
Purushothaman B Lakshmanan P Rawlings D Patterson P Siddique M
Full Access

There is limited literature available looking into circumstances surrounding the development of stress fracture of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of ankle replacement upon local bone mineral density and the phenomenon of stress shielding. We aimed to assess the effect of ankle replacement loading of the medial and lateral malleoli, by analysing the Bone Mineral Density (BMD) of the medial and lateral malleoli before and after Mobility total ankle replacement. Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 months after surgery. The bone mineral density of a 2 cm square area within the medial malleolus and lateral malleolus was measured. The pre-operative and postoperative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. The mean preoperative BMD within the medial malleolus improved from 0.57g/cm2 to mean 6 months postoperative BMD of 0.62g/cm2. The mean preoperative BMD within the lateral malleolus decreased from 0.39g/cm2 to a mean 6 months postoperative of 0.33g/cm2. The mean alignment of the tibial component was 88.50 varus (range 850 varus to 940 valgus). However, there was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). The absence of stress shielding around the medial malleolus indicates that ankle replacements implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Bone & Joint Research
Vol. 10, Issue 12 | Pages 820 - 829
15 Dec 2021
Schmidutz F Schopf C Yan SG Ahrend M Ihle C Sprecher C

Aims. The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). Methods. A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability. Results. The CBT could accurately be determined on XRs and highly correlated to those determined on CT scans (r = 0.87 to 0.93). The CBTavg index of the XRs significantly correlated with the BMD measured by DXA (r = 0.78) and HR-pQCT (r = 0.63), as did the CBTg index with the DXA (r = 0.55) and HR-pQCT (r = 0.64) (all p < 0.001). A high correlation of the BMD and CBT was observed between paired specimens (r = 0.79 to 0.96). The intra- and inter-rater reliability was excellent (ICC 0.79 to 0.92). Conclusion. The cortical index (CBTavg) at the distal radius shows a close correlation to the local BMD. It thus can serve as an initial screening tool to estimate the local bone quality if quantitative BMD measurements are unavailable, and enhance decision-making in acute settings on fracture management or further osteoporosis screening. Cite this article: Bone Joint Res 2021;10(12):820–829


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 22 - 22
11 Apr 2023
Sun Y
Full Access

To analyze the effect of tooth extraction site preservation on bone mineral density 6 months after surgery. From 2020 to 2021, two adjacent teeth (37, 38) of the same patient were extracted at the same time, and then 37 were selected for site preservation, implanted with Bio-oss bone powder, covered with double Bio-gide membrane, reduce tension and sutured. After 6 months of self-healing, 38 was taken CBCT, and the gray value measurement tool in the software was used to measure the bone mineral density of 37 bone graft areas and 38 extraction sockets. Bone density was high in the center of the bone graft area after the extraction site, and the density decreased in the adjacent alveolar socket, but the gray value was still higher than 38 for natural healing. Extraction site surgery can improve bone mass and quality at the extraction site. It is good for implanting


Bone & Joint Research
Vol. 10, Issue 12 | Pages 830 - 839
15 Dec 2021
Robertson G Wallace R Simpson AHRW Dawson SP

Aims. Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. Methods. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading. Results. Cortical measures showed varying correlations with the forearm DXA results (range: Pearson correlation coefficient (r) = 0.343 (p = 0.251) to r = 0.521 (p = 0.068)), with none showing statistically significant correlations. Aluminium equivalent grading showed statistically significant correlations with the forearm DXA of the corresponding region of interest (p < 0.017). Conclusion. Cortical measures, cortical indices, and combined cortical scores did not show a statistically significant correlation to forearm DXA measures. Aluminium-equivalent is an easily applicable method for estimation of BMD from digital radiographs in the preoperative setting. Cite this article: Bone Joint Res 2021;10(12):830–839


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 143 - 143
1 May 2011
Anagnostidis K Tsouknidas A Michailidis N Potoupnis M Bouzakis K Kapetanos G
Full Access

Introduction: Osteoporosis is one of the major diseases worldwide, affecting millions of elderly people, with severe economical and medical consequences. The most commonly used method for the determination of decreased bone quality is the assessment of Bone Mineral Density, measured by dual X-ray absorptiometry (DXA). However DXA is quantitative and not qualitative index of the bone structure. The purpose of this study was to correlate the bone mineral density measured by DXA with the mechanical properties of the femoral neck. Materials and Methods: Bone mineral density of the proximal femur of 30 patients (27 women, 3 men) undergoing total hip displacement was estimated by DXA. The average age of these patients was 63.7 years. Patients with sort femoral neck or previous surgeries in proximal femur were excluded from the study. After hip replacement bone samples (femoral head and neck) were frozen and stored at −60 °C. A plane bone slice with 6mm thickness was sawed of femoral neck using a double cutting saw. The exact specimen dimensions were measured using a sliding calliper with high accuracy. All bone specimens were destructively tested on a material testing machine, in order to determine the material properties (Young’s modulus and yield stress) of the samples. The maximum available compression load was 100 kN with a load rate of 10 kN/min. The operational parameters and experimental data were fully controlled and handled by a graphical software package. Finally all data were evaluated and statistically analyzed. Results: A strong linear correlation of bone mineral density (T-score) with maximum failure load of samples was noted (R2=0.852). No significant differences in Young’s modulus values, was found between bone samples. Conclusions: Bone mineral density measured by DXA, although has limitations, remain a strong predictor of bone strength in the femoral neck region


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 360 - 360
1 May 2009
Purushothaman B Lakshmanan P Rowlings D Patterson P Siddique M
Full Access

Introduction: There is limited literature available looking into circumstances surrounding the development of stress fracture of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of ankle replacement upon local bone mineral density and the phenomenon of stress shielding. Aim: To assess the effect of ankle replacement loading of the medial and lateral malleoli, by analysing the BMD of the medial and lateral malleoli before and after Mobility total ankle replacement. Methodology: Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 months after surgery. The bone mineral density of a 2 cm square area within the medial malleolus and lateral malleolus was measured. The pre-operative and post-operative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. Results: The mean preoperative BMD within the medial malleolus improved from 0.57g/cm2 to mean 6 months postoperative BMD of 0.62g/cm2. The mean preoperative BMD within the lateral malleolus decreased from 0.39g/cm2 to a mean 6 months postoperative BMD of 0.33g/cm2. The mean alignment of the tibial component was 88.50 varus (range 850 varus to 940 valgus). However, there was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). Conclusion: The absence of stress shielding around the medial malleolus indicates that ankle replacements implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 240 - 240
1 Mar 2010
Lakshmanan P Purushothaman B Rowlings D Patterson P
Full Access

Introduction: There is limited literature looking into the circumstances surrounding the development of stress fractures of the medial and lateral malleoli after ankle replacement. We present the preliminary results of a prospective study examining the effect of total ankle replacement (TAR) upon local bone mineral density (BMD) and the phenomenon of stress shielding. Aim: To assess the effect of TAR loading othe medial and lateral malleoli, by analysing the BMD of the medial and lateral malleoli before and after Mobility TAR. Methodology: Ten consecutive patients undergoing Mobility total ankle replacement for osteoarthritis had pre-operative bone densitometry scans of the ankle, repeated at 6 and 12 months after surgery. The bone mineral density of a 2 cm square area within the medial and lateral malleoli was measured. The pre-operative and post-operative bone densitometry scans were compared. The relation between the alignment of the tibial component and the bone mineral density of the malleoli was also analysed. Results: The mean preoperative BMD within the medial malleolus increased from a mean of 0.57g/cm2 to 0.58g/cm2 at six months and 0.60g/cm2 at 12 months postoperatively. The mean preoperative BMD within the lateral malleolus decreased from 0.39g/cm2 to 0.34g/cm2 at six months postoperatively. However the BMD over the lateral malleolus increased to 0.356g/cm2 at 12 months. The mean alignment of the tibial component was 88.50 varus (range 850 varus to 940 valgus). There was no correlation between the alignment of the tibial component and the bone mineral density on the medial malleolus (r = 0.09, p = 0.865). Conclusion: The absence of stress shielding around the medial malleolus indicates that ankle replacements implanted within the accepted limits for implant alignment, load the medial malleolus. However, there was stress shielding over the lateral malleolus resulting in decreased BMD in the lateral malleolus


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 364 - 364
1 Nov 2002
Czerwiñski E Kukielka R Nowak K Szygula Z
Full Access

Varus deformity is found in 90% of patients with knee OA. Axis deviation of lower extremity influences joint biomechanics and produce alteration in bone mineral density. Structure and density of subchondral bone of the knee was previously examined by X-ray. Densitometry gives us a new method of bone mineral content measurement in the interesting regions of the skeleton. The aim of this study was the assessment of effect of varus deformity on bone mineral density in tibial epiphysis. Bone mineral densities (BMD) were estimated in 46 patients at a mean age of 62 years (15 to 78) who were operated on in Department of Orthopaedics. All of them represented osteoarthritis of the knee with varus deviation. BMD of the proximal tibia was evaluated on the Lunar DPX-IQ densitometer and analyzed in three regions of interest: medial, lateral and central. Lower extremity axis deviation was measured using the Metrecom devise (Faro). Results were compared to a control group of 20 patients without osteoarthritis of the knee and without deviation of lower extremity axis. Increased BMD was found on the overweighed compartment of the knee in comparison to the underweight one. These differences were not observed in the control group. We developed a coefficient, which is the ratio of BMD in the overweighed compartment compared to BMD in underweight one. In our patients the mean value of this coefficient was 3.3, and it ranged from 1,2 to 24,5 (SD 5,7). Significant correlation between varus axis deviation of the lower extremity and increased BMD coefficient was found