Fractures of the distal femur are an important cause of morbidity.
Their optimal management remains controversial. Contemporary implants
include angular-stable anatomical locking plates and locked intramedullary
nails (IMNs). We compared the long-term patient-reported functional
outcome of fixation of fractures of the distal femur using these
two methods of treatment. A total of 297 patients were retrospectively identified from
a State-wide trauma registry in Australia: 195 had been treated
with a locking plate and 102 with an IMN. Baseline characteristics
of the patients and their fractures were recorded. Health-related
quality-of-life, functional and radiographic outcomes were compared
using mixed effects regression models at six months and one year.Aims
Patients and Methods
Fracture repair occurs by two broad mechanisms:
direct healing, and indirect healing with callus formation. The effects
of bisphosphonates on fracture repair have been assessed only in
models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised
tibial osteotomy was used. Ten skeletally mature Sprague–Dawley
rats received daily subcutaneous injections of 1 µg/kg ibandronate
(IBAN) and ten control rats received saline (control). Three weeks
later a tibial osteotomy was rigidly fixed with compression plating.
Six weeks later the animals were killed. Fracture repair was assessed
with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly
lower in the IBAN group compared with controls (8.69 Nmm-2 ( Bisphosphonate treatment in a therapeutic dose, as used for risk
reduction in fragility fractures, had an inhibitory effect on direct
fracture healing. We propose that bisphosphonate therapy not be
commenced until after the fracture has united if the fracture has
been rigidly fixed and is undergoing direct osteonal healing. Cite this article:
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
Introduction. Periprosthetic femur fractures are a serious complication after hip replacement surgery. In an aging population these fractures are becoming more and more common. Open reduction and plate osteosynthesis is one of the available treatment options. Objective. To investigate hip stem stability and cement mantle integrity under cyclic loading conditions after plate fixation with screws perforating the cement in the proximal fragment. Methods. Polished tapered hip stems were implanted in 16 biomechanical testing femora with Palacos cement (3rd generation technique) according to the manufacturer's recommendations. 8 testing bones were osteotomised distal to the stem representing the fracture group (Vancouver Type C). The osteotomy was fixed with a polyaxial locking plate, the other 8 specimens served as a control group. The specimens were tested in a biaxial material testing machine under axial compression (including adduction and torsion moments) for 100.000 cycles at physiological loads. Stem subsidence was measured in 3 planes with a stereoscopic image correlation system during the tests. Subsequently the sliced and crack dyed specimens were investigated microscopically for cement cracks. Results. In the control group no specimen failed during testing. There were no statistically significant differences in stem subsidence along the longitudinal axis (control group mean ± SD −15.4 ± 12.2 μm, fracture group −14.1 ± 13.1 μm). In the fracture group two specimens fractured through the most proximal screw hole after 74.000 and 80.000 cycles. Overall 15 out of 36 screws in the proximal fragment had direct stem contact. No cement cracks were detected in the sliced specimens in both groups. Conclusion. Drilling the cement mantle and placing screws in the cement did not increase stem subsidence under cyclic loading. No cracks or cement mantle failure were observed. Large screw diameters proximally weaken the lateral cortex resulting in tension failure of the
Most animal studies indicate that early irrigation
and debridement reduce infection after an open fracture. Unfortunately,
these studies often do not involve antibiotics. Clinical studies
indicate that the timing of initial debridement does not affect
the rate of infection but these studies are observational and fraught
with confounding variables. The purpose of this study was to control
these variables using an animal model incorporating systemic antibiotics
and surgical treatment. We used a rat femur model with a defect which was contaminated
with No animal that received antibiotics and surgery two hours after
injury had detectable bacteria. When antibiotics were started at
two hours, a delay in surgical treatment from two to six hours significantly
increased the development of infection (p = 0.047). However, delaying
surgery to 24 hours increase the rate of infection, but not significantly
(p = 0.054). The timing of antibiotics had a more significant effect
on the proportion of positive samples than earlier surgery. Delaying
antibiotics to six or 24 hours had a profoundly detrimental effect
on the infection rate regardless of the timing of surgery. These
findings are consistent with the concept that bacteria progress
from a vulnerable planktonic form to a treatment-resistant biofilm.