Advertisement for orthosearch.org.uk
Results 1 - 20 of 342
Results per page:
Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). Methods. A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy. Results. The mean preoperative lesion volume was 18.7% (SD 10.2%) of the femoral head. This reduced to 11.6% (SD 7.5%) after three months (p = 0.015) and 3.7% (SD 3%) after one year (p < 0.001). Bone regeneration in healed cases represented a mean 81.2% (SD 13.8%) of the initial lesion volume at one year. Non-healed cases (n = 1 stage progression; n = 3 THAs) still showed bone regeneration but this did not effectively decrease the ON volume. A lesion size under mean 10% (SD 6%) of the femoral head at three months predicted no ON stage progression at one year. Regeneration in the lateral femoral head (C2 under Japanese Investigation Committee (JCI) classification) and in the central and posterior regions of the head was predominant in cases without ON progression. Conclusion. Bone regeneration was observed in osteonecrotic femoral heads three months after expanded autologous BM-hMSC injection, and the volume and location of regeneration indicated the success of the therapy. Cite this article: Bone Joint Res 2022;11(12):881–889


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article: Bone Joint Res 2024;13(9):462–473


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results. DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion. DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives. This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling. Methods. A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group. Results. A total of 572 references were retrieved and 27 were included. Animal models were used in 26 articles, and one article described a human study. Osteoporotic models were included in 11 papers. All articles showed similar or increased effect of Sr in bone formation and/or regeneration, in both healthy and osteoporotic models. No study found a decreased effect. Adverse effects were assessed in 17 articles, 13 on local and four on systemic adverse effects. From these, only one reported a systemic impact from Sr addition. Data on gene and/or protein expression were available from seven studies. Conclusions. This review showed the safety and effectiveness of Sr-enriched biomaterials for stimulating bone formation and remodelling in animal models. The effect seems to increase over time and is impacted by the concentration used. However, included studies present a wide range of study methods. Future work should focus on consistent models and guidelines when developing a future clinical application of this element. Cite this article: N. Neves, D. Linhares, G. Costa, C. C. Ribeiro, M. A. Barbosa. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res 2017;6:366–375. DOI: 10.1302/2046-3758.66.BJR-2016-0311.R1


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 159 - 160
1 Mar 2006
Thorey F Floerkemeier T Hurschler C Schmeling A Raschke M Windhagen H
Full Access

Introduction: There is a need for new non-invasive, predictable and quantifiable techniques to assess the process of fracture healing and remodelling in bone. There are several methods to monitor the bone healing in-vivo. But these methods either fail as quantitative predictors of the healing process (X-ray) or exhibit complicated and expensive measurement principles. Some known in-vivo stiffness measurement methods have several disadvantages including the risk of bone malalignment. Therefore we compared ex-vivo torsional strength of bone with in-vivo torsional stiffness under minimal load in two animal model of distraction osteogenesis. Additionally the device was tested in an ex-vivo model. Methods: An external fixator was combined with a rotating double half-ring. The measurement device was fixed to the half-ring during measurements. It was equipped with a linear variable differential transducer, a load cell, and a stepper motor. During measurements the two parts of the half-ring were rotated against each other and the load and displacement were recorded. The slope coefficient after performing a linear regression between data points of moment and displacement curve was defined as stiffness. Afterwards all models were tested in a material testing system as gold standard. This was tested in an in-vivo animal study of tibial distraction (minipigs time of consolidation 10 days/sheeps time of consolidation 50 days). Results: Between in-vivo initial torsional stiffness and torsional strength in minipigs we found a highly significant (p=0.001) coefficient of determination of 0.82, but we found only a poor correlation (p> 0.05) in sheeps. However, the results of the ex-vivo model showed a high precision and accuracy. Discussion: The results of this study suggest that the bone regenerate strength of healing bones can be assessed in-vivo by the presented inital stiffness measurement method in the beginning of an early stage of healing as shown in minipigs. But at the end of the healing period the correlation of strength and stiffness leveled off. There is a similar model showing an excellent correlation, that agree with our data. They explained the weakening of the correlation at the end of healing by a transformation of early bone to lamellar bone after a 2/3 consolidation. In summary, the presented device could be a reliable future tool to monitor the healing progress in patients with bone malalignement or fractures in the beginning of the healing period


Bone & Joint Research
Vol. 4, Issue 10 | Pages 170 - 175
1 Oct 2015
Sandberg OH Aspenberg P

Objectives

Healing in cancellous metaphyseal bone might be different from midshaft fracture healing due to different access to mesenchymal stem cells, and because metaphyseal bone often heals without a cartilaginous phase. Inflammation plays an important role in the healing of a shaft fracture, but if metaphyseal injury is different, it is important to clarify if the role of inflammation is also different. The biology of fracture healing is also influenced by the degree of mechanical stability. It is unclear if inflammation interacts with stability-related factors.

Methods

We investigated the role of inflammation in three different models: a metaphyseal screw pull-out, a shaft fracture with unstable nailing (IM-nail) and a stable external fixation (ExFix) model. For each, half of the animals received dexamethasone to reduce inflammation, and half received control injections. Mechanical and morphometric evaluation was used.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 34 - 34
1 Mar 2006
Wellmann M Witte F Nellesen J Crostack H Floerkemeyer T Windhagen H
Full Access

Introduction: The long consolidation phase of patients undergoing distraction osteogenesis (DO) causes a high risk of side effects and contributes to high costs. Thus, the development and evaluation of treatments that accelerate the bone consolidation process is of great interest. Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of the callus. However, the potential benefits of rhBMP-2 on trabecular microarchitecture during DO have not been investigated up to date. In this study the regenerate microarchitecture was assessed using 3D micro-computed tomography (CT).

Methods: Mid-diaphyseal osteotomies were created in the right limb of twenty-four skeletally mature sheep, which were stabilized with an external fixator. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm daily over a period of 20 days. The operated limbs were randomly assigned to three treatment groups and one control group: (A) triple injection of rhBMP-2/NaCl, (B) single injection of rhBMP-2/Hydroxylapatite, and (C) single injection of buffer/Hydroxylapatit, (D) no injection. Groups A and C were injected at day 27. Group B was injected on days 3, 10 and 17. The animals were sacrificed after 74 days. The tibiae were analyzed by CT and for bone volume/total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.) and Connectivity. The BV/TV was maesured for the total volume of the distraction zone (BV/TVtotal) respectively in a subvolume with emphasize on the cortical bone region (BV/TVcortical). All other microarchitecture parameters were measured in the cortical weighted subvolume.

Results: The stereologic evaluation revealed a significant higher BV/TVcortical, Tb.N and Connectivity in the triple rhBMP-2 injected group A than in the control (D). Furthermore, the Tb.Sp. in group A was significant lower than in group D. The single injections of rhBMP-2/carrier in group B showed a significant higher BV/TVcortical, Tb.N and Connectivity than the control (D). Although the BV/TVcortical was increased in group A and B, there was no significant difference in BV/TV total between the rhBMP-2 treated groups (A, B) and the control (D).

Discussion: In this DO model a triple injection of rhBMP-2 has been demonstrated to induce significant changes in trabecular microarchitecture. RhBMP-2 does not increase the total amount of newly formed bone, but it enhances the formation of the corticalis. The microstructural changes in the cortical volume: increase of Tb.N and Connectivity, decrease of Tb.Sp., are discussed to be biomechanically highly relevant. This study suggests that rhBMP-2 optimizes the trabecular microarchitecture, which might explain the advanced mechanical integrity of newly formed bone under rhBMP-2 treatment.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 409 - 412
22 Jun 2022
Tsang SJ Ferreira N Simpson AHRW


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives

Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis.

Methods

Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days.


Bone & Joint Research
Vol. 1, Issue 1 | Pages 1 - 7
1 Jan 2012
Rosenberg N Rosenberg O

Objectives

The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation.

Methods

Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 140 - 140
2 Jan 2024
Banfi A
Full Access

Bone regeneration is an area of acute medical need, but its clinical success is hampered by the need to ensure rapid vascularization of osteogenic grafts. Vascular Endothelial Growth Factor (VEGF) is the master regulator of vascular growth and during bone development angiogenesis and osteogenesis are physiologically coupled through so-called angiocrine factors produced by blood vessels. However, how to exploit this process for therapeutic bone regeneration remains a challenge (1). Here we will describe recent work aiming at understanding the cross-talk between vascular growth and osteogenesis under conditions relevant for therapeutic bone regeneration. To this end we take advantage of a unique platform to generate controlled signalling microenvironments, by the covalent decoration of fibrin matrices with tunable doses and combinations of engineered growth factors. The combination of human osteoprogenitors and hydroxyapatite in these engineered fibrin matrices provides a controlled model to investigate how specific molecular signals regulate vascular invasion and bone formation in vivo. In particular, we found that:. 1). Controlling the distribution of VEGF protein in the microenvironment is key to recapitulate its physiologic function to couple angiogenesis and osteogenesis (2);. 2). Such coupling is exquisitely dependent on VEGF dose and on a delicate equilibrium between opposing effects. A narrow range of VEGF doses specifically activates Notch1 signaling in invading blood vessels, inducing a pro-osteogenic functional state called Type H endothelium, that promotes differentiation of surrounding mesenchymal progenitors. However, lower doses are ineffective and higher ones paradoxically inhibit both vascular invasion and bone formation (Figure 1) (3);. 3). Semaphorin3a (Sema3a) acts as a novel pro-osteogenic angiocrine factor downstream of VEGF and it mediates VEGF dose-dependent effects on both vascular invasion and osteogenic progenitor stimulation. In conclusion, vascularization of osteogenic grafts is not simply necessary in order to enable progenitor survival. Rather, blood vessels can actively stimulate bone regeneration in engineered grafts through specific molecular signals that can be harnessed for therapeutic purposes. Acknowledgements: This work was supported in part by the European Union Horizon 2020 Program (Grant agreement 874790 – cmRNAbone). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 117 - 117
2 Jan 2024
Hankenson K
Full Access

Growth factors produced by inflammatory cells and mesenchymal progenitors are required for proper bone regeneration. Signaling pathways activated downstream of these proteins work in concert and synergistically to drive osteoblast and/or chondrocyte differentiation. While dysregulation can result in abnormal healing, activating these pathways in the correct spatiotemporal context can enhance healing. Bone morphogenetic protein (BMP) signaling is well-recognized as being required for bone regeneration, and BMP is used clinically to enhance bone healing. However, it is imperative to develop new therapeutics that can be used alone or in conjunction with BMP to drive even more robust healing. Notch signaling is another highly conserved signaling pathway involved in tissue development and regeneration. Our work has explored Notch signaling during osteoblastogenesis and bone healing using both in vitro studies with human primary mesenchymal progenitor cells and in vivo studies with genetically modified mouse models. Notch signaling is required and sufficient for osteoblast differentiation, and is required for proper bone regeneration. Indeed, intact Notch signaling through the Jagged-1 ligand is required for BMP induced bone formation. On-going work continues to explore the intersection between BMP and Notch signaling, and determining cell types that express Notch receptors and Notch ligands during bone healing. Our long-term objective is to develop Notch signaling as a clinical therapy to repair bone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 139 - 139
2 Jan 2024
van Griensven M
Full Access

Anatomically, bone consists of building blocks called osteons, which in turn comprise a central canal that contains nerves and blood vessels. This indicates that bone is a highly innervated and vascularized tissue. The function of vascularization in bone (development) is well-established: providing oxygen and nutrients that are necessary for the formation, maintenance, and healing. As a result, in the field of bone tissue engineering many research efforts take vascularization into account, focusing on engineering vascularized bone. In contrast, while bone anatomy indicates that the role of innervation in bone is equally important, the role of innervation in bone tissue engineering has often been disregarded. For many years, the role of innervation in bone was mostly clear in physiology, where innervation of a skeleton is responsible for sensing pain and other sensory stimuli. Unraveling its role on a cellular level is far more complex, yet more recent research efforts have unveiled that innervation has an influence on osteoblast and osteoclast activity. Such innervation activities have an important role in the regulation of bone homeostasis, stimulating bone formation and inhibiting resorption. Furthermore, due to their anatomical proximity, skeletal nerves and blood vessels interact and influence each other, which is also demonstrated by pathways cross-over and joint responses to stimuli. Besides those closely connected sytems, the immune system plays also a pivotal role in bone regeneration. Certain cytokines are important to attract osteogenic cells and (partially) inhibit bone resorption. Several leukocytes also play a role in the bone regeneration process. Overall, bone interacts with several systems. Aberrations in those systems affect the bone and are important to understand in the context of bone regeneration. This crosstalk has become more evident and is taken more into consideration. This leads to more complex tissue regeneration, but may recapitulate better physiological situations


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 111 - 111
14 Nov 2024
Torre ID Redondo LM Sierra CG Cabello JCR Bsarcia AJA
Full Access

Introduction. The objective of the work is construction of a multi-bioactive scaffold based on that allows a space/time control over the regeneration of damaged bones by Medication-Related Osteonecrosis of the Jaw using a minimal invasive approach based on the injection of the fast-degrading pro neuro and angiogenic ELR (Elastin-Like Recombinamers) based hydrogels. Method. Chemical crosslinking facilitated the creation of multi-bioactive scaffolds using ELRs with reactive groups. Cell-loaded multi-bioactive scaffolds, prepared and incubated, underwent evaluation for adhesion, proliferation, angiogenic, and neurogenic potential. In vitro assessments utilized immunofluorescence staining and ELISA assays, while live-recorded monitoring and live-dead analysis ensured cytocompatibility. In rat and rabbit models, preformed scaffolds were subcutaneously implanted, and the regenerative process was evaluated over time. Rabbit models with MRONJ underwent traditional or percutaneous implantation, with histological evaluation following established bone histological techniques. Result. A 3D scaffold using ELR that combines various peptides with different degradation rates to guide both angiogenesis and neurogenesis has been developed. Notably, scaffolds with different degradation rates promoted distinct patterns of vascularization and innervation, facilitating integration with host tissue. This work demonstrates the potential for tailored tissue engineering, where the scaffold's bioactivities and degradation rates can control angiogenesis and neurogenesis. In an animal model of medication-related osteonecrosis of the jaw (MRONJ), the scaffold showed promising results in promoting bone regeneration in a necrotic environment, as confirmed by histological and imaging analyses. This study opens avenues for novel tissue-engineering strategies where precise control over vascularization and nerve growth is crucial. Conclusion. A groundbreaking dual approach, simultaneously targeting angiogenesis and innervation, addresses the necrotic bone in MRONJ syndrome. Vascularization and nerve formation play pivotal roles in driving reparative elements for bone regeneration. The scaffold achieves effective time/space control over necrotic bone regeneration. The authors are grateful for funding from the Spanish Government (PID2020-118669RA-I00)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 107 - 107
11 Apr 2023
Lee E Ko J Park S Moon J Im G
Full Access

We found that adipose stem cells are poorly differentiated into bone and that their ability to differentiate into bone varies from cell line to cell line. The osteogenic differentiation ability of the adipose stem cell lines was distinguished through Alzarin Red Staining, and the cell lines that performed well and those that did not were subjected to RNA-seq analysis. The selected gene GSTT1 (glutathione S-transferase theta-1) gene is a member of a protein superfamily that catalyzes the conjugation of reduced glutathione to a variety of hydrophilic and hydrophobic compounds. The purpose of this study is to treat avascular necrosis and bone defect by improving bone regeneration with adipose stem cells introduced with a new GSTT1 gene related to osteogenic differentiation of adipose stem cells. In addition, the GSTT1 gene has the potential as a genetic marker that can select a specific cell line in the development of an adipose stem cell bone regeneration drug. Total RNA was extracted from each sample using the TRIzol reagent. Its concentration and purity were determined based on A260 and A260/A280, respectively, using a spectrophotometer. RNA sequencing library of each sample was prepared using a TruSeq RNA Library Prep Kit. RNA-seq experiments were performed for hADSCs. Cells were transfected with either GSTT1 at 100 nM or siControl (scramble control) by electroporation using a 1050 pulse voltage for 30 ms with 2 pulses using a 10 μl pipette tip. The purpose of this study is to discover genetic markers that can promote osteogenic differentiation of adipose stem cells (hADSCs) through mRNA-seq gene analysis. The selected GSTT1 gene was found to be associated with the enhancement of osteogenic differentiation of adipose stem cells. siRNA against GSTT1 reduced osteogenic differentiation of hADSCs, whereas GSTT1 overexpression enhanced osteogenic differentiation of hADSCs under osteogenic conditions. In this study, GSTT1 transgenic adipose stem cells could be used in regenerative medicine to improve bone differentiation. In addition, the GSTT1 gene has important significance as a marker for selecting adipose stem cells with potential for bone differentiation in the development of a therapeutic agent for bone regeneration cells


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 97 - 97
2 Jan 2024
Mohamed-Ahmed S Yassin M Rashad A Lie S Suliman S Espedal H Idris S Finne-Wistrand A Mustafa K Vindenes H Fristad I
Full Access

Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results. Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 125 - 125
2 Jan 2024
Mbuku R Sanchez C Evrard R Englebert A Manon J Henriet V Nolens G Duy K Schubert T Henrotin Y Cornu O
Full Access

To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in in-vitro and in-vivo models. A graft composed by hydroxyapatite (HA) and β-TCP was designed as a cylinder with 3D gyroid porosities and 7 mm medullary space based on swine's anatomy. It was produced using a stereolithography 3D-printing machine (V6000, Prodways). Sterile bone grafts impregnated with or without a 10µg/mL porcine BMP-2 (pBMP-2) solution were implanted into porcine femurs in a bone loss model. Bone defect was bi-weekly evaluated by X-ray during 3 months. After sacrifice, microscanner and non-decalcified histology analysis were conducted on biopsies. Finally, osteoblasts were cultured inside the bone graft or in monolayer underneath the bone graft. Cell viability, proliferation, and gene expression were assessed after 7 and 14 days of cell culture (n=3 patients). 3D scaffolds were successfully manufactured with a composition of 80% HA and 20% β-TCP ±5% with indentation compressive strength of 4.14 MPa and bending strength of 11.8MPa. In vivo study showed that bone regeneration was highly improved in presence of pBMP-2. Micro-CT shows a filling of the gyroid sinuses of the implant (Figure 1). In vitro, the presence of BMP2 did not influence the viability of the osteoblasts and the mortality remained below 3%. After 7 days, the presence of BMP2 in the scaffold significantly increased by 85 and 65% the COL1A1 expression and by 8 and 33-fold the TNAP expression by osteoblasts in the monolayer or in the scaffold, respectively. This BMP2 effect was transient in monolayer and did not modify gene expression at day 14. BMP2-impregnated bone graft is a promising patient-personalized 3D-printed solution for bone defect regeneration, by promoting neighboring host cells recruitment and solid new bone formation. For any figures and tables, please contact the authors directly