Functional outcomes are commonly reported in studies of musculoskeletal oncology patients undergoing limb salvage surgery; however, interpretation requires knowledge of the smallest amount of improvement that is important to patients – the minimally important difference (MID). We established the MIDs for the Musculoskeletal Tumor Society Rating Scale (MSTS) and Toronto Extremity Salvage Score (TESS) in patients with
Abstract. Background. Extracorporeal radiation therapy (ECRT) has been reported as an oncologically safe and effective reconstruction technique for limb salvage in diaphyseal sarcomas with promising functional results. Factors affecting the ECRT graft-host bone incorporation have not been fully investigated. Methods. In our series of 51 patients of primary
Functional outcomes are important for patients with
Introduction. We demonstrate the preliminary results with a novel technique to solve large bone defects using two lengthening nails, working together and aligned in a custom made device. An illustrative case that successfully produced 17 cm bone in 3.5 months, is presented. Materials and Methods. A 28 year old healthy male presented with a slowly growing mass in the left femur. No general symptoms were reported, no weight loss, no previous illness. Histopathology, CT and MRI scans revealed a malignant diaphyseal
Salmonella osteomyelitis occurs infrequently in children without a sickle cell disease, and its subacute form is rare. Diagnosis is often delayed because its slow onset, intermittent pain and it can be confused with
Foreword. Silver coatings, used in many surgical devices, have demonstrated good antimicrobial activity and low toxicity. Oncological musculoskeletal surgery have an high risk of infection, so in the last decades, silver coated mega-prostheses have been introduced and are becoming increasingly widespread. Material and methods. We performed a retrospective analysis of 158 cases of
Osteosarcoma (OS) is the most prevalent
Objectives. Our objectives were to describe the therapeutic aspects and assess the prognosis of chronic osteomyelitis in children. Materials and methods. We made a retrospective study from January 2007 to December 2016. The study concerned children from 0 to15 years, treated for chronic osteomyelitis and monitored in the pediatric surgery department of the teaching hospital Gabriel Toure, Bamako (Mali). The other types of bone infections, osteitis and
The rate of fracture and subsequent nonunion after radiation therapy for soft-tissue sarcomas and
Advances in cancer therapy have prolonged patient survival even in the presence of disseminated disease and an increasing number of cancer patients are living with metastatic bone disease (MBD). The proximal femur is the most common long bone involved in MBD and pathologic fractures of the femur are associated with significant morbidity, mortality and loss of quality of life (QoL). Successful prophylactic surgery for an impending fracture of the proximal femur has been shown in multiple cohort studies to result in longer survival, preserved mobility, lower transfusion rates and shorter post-operative hospital stays. However, there is currently no optimal method to predict a pathologic fracture. The most well-known tool is Mirel's criteria, established in 1989 and is limited from guiding clinical practice due to poor specificity and sensitivity. The ideal clinical decision support tool will be of the highest sensitivity and specificity, non-invasive, generalizable to all patients, and not a burden on hospital resources or the patient's time. Our research uses novel machine learning techniques to develop a model to fill this considerable gap in the treatment pathway of MBD of the femur. The goal of our study is to train a convolutional neural network (CNN) to predict fracture risk when metastatic bone disease is present in the proximal femur. Our fracture risk prediction tool was developed by analysis of prospectively collected data of consecutive MBD patients presenting from 2009–2016. Patients with primary
Advances in cancer therapy have prolonged cancer patient survival even in the presence of disseminated disease and an increasing number of cancer patients are living with metastatic bone disease (MBD). The proximal femur is the most common long bone involved in MBD and pathologic fractures of the femur are associated with significant morbidity, mortality and loss of quality of life (QoL). Successful prophylactic surgery for an impending fracture of the proximal femur has been shown in multiple cohort studies to result in patients more likely to walk after surgery, longer survival, lower transfusion rates and shorter post-operative hospital stays. However, there is currently no optimal method to predict a pathologic fracture. The most well-known tool is Mirel's criteria, established in 1989 and is limited from guiding clinical practice due to poor specificity and sensitivity. The goal of our study is to train a convolutional neural network (CNN) to predict fracture risk when metastatic bone disease is present in the proximal femur. Our fracture risk prediction tool was developed by analysis of prospectively collected data for MBD patients (2009–2016) in order to determine which features are most commonly associated with fracture. Patients with primary
Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after
Aim. The demand for a synthetic bone substitute that can build bone and at the same time kill bacteria is high. The aim of this study was to compare the elution of gentamicin from a new synthetic bone substitute in vitro with the performance in clinical applications. Method. Gentamicin release was measured from a synthetic bone graft substitute, comparing in vitro and clinical conditions:. 1). elution in Ringers solution. The bone graft substitute contained 175mg gentamicin per 10mL. The material was introduced either as paste or as pre-set beads with a high or low surface areas, >100cm. 2. and 24cm. 2. respectively. The gentamycin release was measured by daily collection of samples. 2). elution in patients treated for trochanteric hip fractures(n=6) or uncemented hip revisions(n=5) 7,3±1,1mL of substitute was implanted and drainage was collected at 6h,12h,24h,30h,36h post-op. Blood serum was collected every hour for the first 6h and thereafter every 6h until 4 days post-op, urine – daily for the first 7 days post-op. 3). elution in patients treated after
Introduction. The number of total hip arthroplasties has been increasing worldwide, and it is expected that revision surgeries will increase significantly in the near future. Although reconstructing normal hip biomechanics with extensive bone loss in the revision surgery remains challenging. The custom−made acetabular component produced by additive manufacturing, which can be fitted to a patient's anatomy and bone defect, is expected to be a predominant reconstruction material. However, there have been few reports on the setting precision and molding precision of this type of material. The purpose of this study was to validate the custom−made acetabular component regarding postoperative three−dimensional positioning and alignment. Methods. Severe bone defects (Paprosky type 3A and 3B) were made in both four fresh cadaveric hip joints using an acetabular reamer mimicking clinical cases of acetabular component loosening or osteolysis in total hip arthroplasty. On the basis of computed tomography (CT) after making the bone defect, two types of custom−made acetabular components (augmented type and tri−flanged type) that adapted to the bone defect substantially were produced by an additive manufacturing machine. A confirmative CT scan was taken after implantation of the component, and then the data were installed in an analysis workstation to compare the postoperative component position and angle to those in the preoperative planning. Results. The mean absolute deviations of the center of the hip joint between preoperative planning and the actual component position in the augmented type were 0.7 ± 0.4 mm for the horizontal position, 0.2 ± 0.1 mm for the vertical position, and 0.5 ± 0.3 mm for the antero−posterior position. The mean absolute deviations of the center of the hip joint in the tri−flanged type in the horizontal, vertical, and antero−posterior positions were 1.0 ± 0.4 mm, 0.4 ± 0.2 mm, 0.3 ± 0.1 mm, respectively. The mean absolute deviations of the component angle were 3.5° ± 0.9° at inclination and 2.0° ± 1.7° at anteversion in the augmented type and 0.6° ± 0.5° at inclination and 0.9° ± 0.3° at anteversion in the tri−flanged type. Conclusion. Since custom−made orthopaedic implants produced by additive manufacturing can support individual anatomy and bone defect, this type of implant is expected to be applied to revision surgery and
To document early in-vivo concentrations of gentamicin in plasma and drain fluid after bone defect reconstruction using a gentamicin-eluting bone graft substitute. Introduction. Reconstruction of bone defects after surgical
Ewing sarcoma (ES) and Osteosarcoma (OS) are the 2 most common malignant primary
Most types of
INTRODUCTION. Allograft reconstruction after resection of primary bone sarcomas has a non-union rate of approximately 20%. Achieving a wide surface area of contact between host and allograft bone is one of the most important factors to help reduce the non-union rate. We developed a novel technique of haptic robot-assisted surgery to reconstruct bone defects left after primary bone sarcoma resection with structural allograft. METHODS. Using a sawbone distal femur joint-sparing hemimetaphyseal resection/reconstruction model, an identical bone defect was created in six sawbone distal femur specimens. A tumor-fellowship trained orthopedic surgeon reconstructed the defect using a simulated sawbone allograft femur. First, a standard, ‘all-manual’ technique was used to cut and prepare the allograft to best fit the defect. Then, using an identical sawbone copy of the allograft, the novel haptic-robot technique was used to prepare the allograft to best fit the defect. All specimens were scanned via CT. Using a separately validated technique, the surface area of contact between host and allograft was measured for both (1) the all-manual reconstruction and (2) the robot-assisted reconstruction. All contact surface areas were normalized by dividing absolute contact area by the available surface area on the exposed cut surface of host bone. RESULTS. The mean area of contact between host and allograft bone was 24% (of the available host surface area) for the all-manual group and 76% for the haptic robot-assisted group (p=0.004). CONCLUSIONS. This is the first report to our knowledge of using haptic robot technology to assist in structural bone allograft reconstruction of defects left after primary
Resecting bone tumours within the pelvis is highly challenging and requires good cutting accuracy to achieve sufficient margins. Computer-assisted technologies such as intraoperative navigation have been developed for pelvic bone tumour resection. Patient-specific instruments have been transposed to tumour surgery. The present study reports a series of 11 clinical cases of PSI-assisted bone tumour surgery within the pelvis, and assesses how accurately a preoperative resection strategy can be replicated intraoperatively with the PSI. The patient series consisted in 11 patients eligible for curative surgical resection of primary
INTRODUCTION. Over the last twenty years, image-guided interventions have been greatly expanded by the advances in medical imaging and computing power. A key step for any image-guided intervention is to find the image-to-patient transformation matrix, which is the transformation matrix between the preoperative 3D model of patient anatomy and the real position of the patient in the operating room. In this work, we propose a robust registration algorithm to match ultrasound (US) images with preoperative Magnetic Resonance (MR) images of the Humerus. MATERIALS AND METHODS. The fusion of preoperative MR images with intra-operative US images is performed through an NDI Spectra® Polaris system and a L12-5L60N TELEMED® ultrasound transducer. The use of an ultrasound probe requires a calibration procedure in order to determine the transformation between an US image pixel and its position according to a global reference system. After the calibration step, the patient anatomy is scanned with US probe. US images are segmented in real time in order to extract the desired bone contour. The use of an optical measurement system together with trackers and the previously-computed calibration matrix makes it possible to assign a world coordinate position to any pixel of the 2D US image. As a result, the set of US pixels extracted from the images results in a cloud of 3D points which will be registered with the 3D Humerus model reconstructed from MR images. The proposed registration method is composed of two steps. The first step consists of US 3D points cloud alignment with the 3D bone model. Then, the second step performs the widely-known Iterative Closest Point (ICP) algorithm. In order to perform this, we define the coordinate system of both the 3D Humerus model and the US points cloud. The frame directions correspond to the directions of the principal axes of inertia calculated from the matrices of inertia of both the preoperative 3D model and the US data obtained intra-operatively. Then, we compute the rotation matrix to estimate the transformation between the two coordinate systems previously calculated. Finally the translation is determined by evaluating the distance between the mass centres of the two 3D surfaces. RESULTS. In order to evaluate the performance of this registration method in terms of precision and accuracy, we performed the US/MRI fusion on 8 patients. The evaluation criterion used for the validation step was the fiducial registration error (FRE) estimation based on 8 anatomic fiducials detected on the Humerus of the patient. The mean, standard deviation, minimum and maximum values of the 8 Fiducial Registration Errors were 4.34, 2.20, 2.81 and 9.48 mm, respectively. DISCUSSIONS. In this work, we propose a robust registration method of MR and US data. Thanks to the optical system, this fusion will allow us for example to guide and assist surgeons in the positioning of the radiofrequency probe for