Aim. A significant number of patients undergoing shoulder arthroplasty surgery have
Background. Although described as a commensal bacterium with low pathogenicity, Cutibacterium acnes involvement has been reported in many clinical entities: infections associated with devices, such as shoulder prosthetic joint infections, osteosynthesis, breast implants or cerebrospinal fluid shunts. Various studies show that
Aim. Cutibacterium acnes is a major skin commensal that may also act as an opportunistic pathogen. Findings of
Aim. Cutibacterium acnes (C. acnes) is the most cultured organism implicated in periprosthetic shoulder infections. Nevertheless, the clinical significance of its persistence on the skin surface and in the deep layers during shoulder arthroplasty surgery remains still unknown. The purpose of this study was to know if the
Aim. The aim of our study was to analyze putative genes for virulence factors of Cutibacterium isolates obtained from implant-associated infections. Methods. We analyzed 64 isolates of Cutibacterium spp. (C. acnes (53/64), C. avidum (6/64), C. granulosum (4/64), C. namnetense (1/64)) using NextSeq 550 (Illumina, San Diego, CA, USA) and performed genomic analysis of 24 genes associated with virulence factors (VFs) of
Aim. Cutibacterium acnes is a significant cause of late-onset spinal implant infection (SII). In addition, usual preoperative prophylactic measures may be insufficient to prevent
Aim. Cutibacterium acnes is involved in chronic/low-grade pathologies such as prosthetic joint infection (PJI) or sarcoidosis. During these diseases, granulomatous structures are frequently observed. In this study, we induced a physiological granulomatous reaction in response to different well-characterized clinical
Aim. Cutibacterium acnes, a skin commensal, is responsible for 5–10% of prosthetic joint infections (PJI). All current microbiological definitions of PJI require two or more identical commensal isolates to be recovered from the same procedure to diagnose PJI and rule out contamination. Unlike coagulase negative staphylococci,
Aim. The aim of this study was to confirm that Mirra's criterion (≥ 5 Polymorphonuclears (PMNs) per field in 5 high power fields (HPFs)) is not adequate for diagnosis of chronic bone and joint infections (BJIs) due to Cutibacterium acnes (C. acnes). The second objective was to determine if plasma-cell infiltration, that is a classical marker of chronic inflammation, could be useful for the diagnosis of chronic BJIs due to
Aim. The aim of this study was to develop an in-house multiplex PCR real-time assay on the LightCycler 480 system (Roche, Basel, Switzerland) with the aim of rapid detection of common pathogens in prosthetic joint infections (PJI), followed by validation on clinical samples (sonication fluid and tissue biopsies) routinely collected for PJI diagnosis. Methods. Using the PrimerQuest and CLC WorkBench tool, we designed six primer sets with specific fluorescently labelled TaqMan probes for the nuc gene in different Staphylococcus species (S. aureus, S. epidermidis, S. capitis, S. lugdunensis, S. hominis, S. haemolyticus). In addition, primers previously developed by Renz et al. (2022) for
Aim. The aim of our study was to identify pathogens involved in septic knee arthritis after ACLR and to describe clinical features, treatment and outcome of infected patients. Methods. We conducted a retrospective observational study including all patients with ACLR infection in 3 orthopedic centers sharing the same infectious disease specialists. Results. During a seven-year period (2011–2017) we identified 74 infected patients among 9858 patients who had ACLR (incidence rate = 0.0075). Fourteen patients had polymicrobial infection. We identified 89 pathogens. Twenty four patients (34.4 %) were infected with S. aureus (27% of all isolates)(only one oxacillin-resistant strain).
Aim. To evaluate whether sonication of implant material and subsequent culturing add clinical relevance to culturing of tissue biopsies for improved antibiotic treatment in treatment of bone and joint infection. Method. A retrospective examination of patients’ charts and microbiological analyses in patients who had explanted material (plates, screws, k-wires and prostheses) send for sonication between December 2020 and April 2022. Results. 77/143 (54 %) patients had complete agreement between the cultures from tissue biopsies and sonication fluid. 66/143 (46 %) patients had partial or no agreement between the cultures from tissue biopsies and sonication fluid. Of the 66 patients, 31 (47 %) had a culture positive sonication fluid and tissue biopsies that were positive with one or more bacterial isolates. 26/66 (39 %) patients had a culture positive sonication fluid and tissue biopsies that were negative. 9/66 (14 %) patients had negative sonication fluid and positive tissue biopsies. Of the 26 patients with culture positive sonication fluid and culture negative tissue biopsies, virulent bacteria were found in 5 (19 %) patients, making the diagnosis and treatment of infection straight forward. The remaining 21 (81 %) patients had
Aim. Periprosthetic joint infection (PJI) is one of the most devastating complications after joint replacement. It is associated with high morbidity and economic burden when misdiagnosed as an aseptic failure. Among all cases of PJI, up to 25% could yield negative cultures. Conversely, among cases of aseptic failures, up to 30% may actually be undiagnosed PJIs. In PJIs microbiological diagnosis is a key step for successful treatment. Sonication of the removed prosthesis is more sensitive than conventional periprosthetic-tissue culture, especially in patients who received antimicrobial therapy before surgery. This study aimed to compare the diagnostic value of classic sonication fluid cultures (SF-C) and sonication fluid incubation in blood culture bottle (SF-BCB). Method. Between 2016 and 2018 we analysed 160 revision procedures of joint arthroplasties. For each procedure, at least 5 microbiological and multiple histopathological samples were harvested, and explant sonication was performed which was further analysed by SF-C and SF-BCB. For SF-C classical cultivation of sonication fluid was performed. While for SF-BCB, 10 mL of sonication fluid was inoculated into aerobic and anaerobic lytic blood culture bottles. The definite diagnosis of PJI was based on the EBJIS definition. Results. Among 160 revisions, 59 PJIs were identified, 15 patients were treated with the debridement and implant retention, 7 patients with the one-stage and 35 with the two-stage exchange, remaining 2 were partial revisions. The sensitivity of SF-C and SF-BCB were 81.5% and 94.9%, respectively. The mismatch of microbe identification was observed in 5 cases. We observed positive SF-C while negative SF-BCB in 4 cases, among them having 2 positive histology. While 12 patients have negative SF-C and positive SF-BCB, among them 3 have positive and 6 negative histology. Among these 12 patients, typical low-grade microbes were identified in 9 cases (5 cases of
Aim. Diagnosing or excluding a chronic prosthetic joint infection (PJI) prior to revision surgery can be a clinical challenge. To enhance accuracy of diagnosis, several biomarkers were introduced in recent years, but most are either expensive or not available as a rapid test. We compared the diagnostic accuracy of leucocyte esterase (€0.20 per sample), calprotectin (€20 per sample) and alpha defensin (€200 per sample). Method. We prospectively evaluated PJI patients with chronic pain with or without prosthetic loosening between 2017 and 2018. Synovial fluid was collected prior to revision surgery. Leucocyte esterase was measured using a reagent strip (2+ considered as positive), and calprotectin and alpha defensin were measured using a lateral flow immunoassay. Intraoperative cultures (5 periprosthetic tissue samples, synovial fluid and sonication fluid) incubated for 9 days, were used as gold standard. At least two positive cultures of low-grade microorganisms with the same antibiogram were required to diagnose PJI. Results. A total of 19 patients were included (knee =11, hip =8). None of the patients were treated with antibiotics prior to revision surgery. A PJI was diagnosed in 8 patients (42.1%). The diagnostic accuracy of leucocyte esterase vs. calprotectin vs. alpha defensin was as follows; sensitivity 50.0% vs. 87.5% vs. 87.5%, specificity 81.8% vs. 90.9% vs. 100%, positive predictive value 60.0% vs. 87.5% vs. 100% and negative predictive value 75.0% vs. 90.9% vs. 91.6%, respectively. Both calprotectin and alpha defensin were false negative in one PJI caused by Cutibacterium acnes. The other two
Aim. Arthroscopic interventions have revolutionized the treatment of joint pathologies. The appropriate diagnostics and treatment are required for infections after ligament reconstructions using non-resorbable material such as tendon grafts, anchors, and sutures, prone to biofilm formation. The infection rate is around 1% for knee and shoulder, while up to 4% for Achilles tendon reconstructions. Despite high number of these procedures worldwide, there is limited evidence about the best treatment protocol. Our study aimed to provide a general protocol for the treatment of small implants for soft tissue reconstruction. Method. Between 2019 and 2023, we treated 48 infections of ligament, meniscus, and tendon reconstructions out of 7291 related procedures performed in the same time period. Early infection (<30 days) were treated with an arthroscopic debridement and implant retention (DAIR), except Achilles tendons had open DAIR, while those with delayed or chronic infection (>30 days) were treated with extensive debridement and lavage combined with one-stage exchange (OSE) or implant removal. During surgery, at least 5 microbiological s and samples for histopathology were obtained. The removed material was sonicated. After surgery, all patients were one week on iv. antibiotics, followed by oral antibiofilm antibiotics for 6 weeks including rifampicin and/or a quinolone. All patients were followed for at least 1 year. Failure was defined as the need for additional revision surgery after finished iv. antibiotic treatment. Results. Among 48 patients, 38 were early and 10 were late acute or chronic infections. The incidence of infection for our cohort was 0.7%. We observed 27 infections after ligament reconstruction of the knee, 15 of the shoulder, 5 of the ankle, and 1 infection of the elbow joint. 40 patients were treated with DAIR, 5 with OSE, and 3 with implant removal. We had 11
Aim. Treatment algorithms for fracture-related nonunion depend on the presence or absence of bacterial infection. However, the manifestation of septic nonunion varies. Low-grade infections, unlike manifest infections, lack clinical signs of infection and present similarly to aseptic nonunion. The clinical importance of low-grade infection in nonunion is not entirely clear. Therefore, the aim of this study was to evaluate the clinical relevance of low-grade infection in the development and management of femoral or tibial nonunion. Method. A prospective, multicenter clinical study enrolled patients with nonunion and regular healed fractures. Preoperatively, complete blood count without differential, C-reactive protein (CRP), and procalcitonin were obtained, clinical signs of infection were recorded, and a suspected septic or aseptic diagnosis was made based on history and clinical examination. During surgical nonunion revision or routine implant removal, tissue samples were collected for microbiology and histopathology, and osteosynthesis material for sonication. Nonunion patients were followed for 12 months. Definitive diagnosis of “septic” or “aseptic” nonunion was made according to diagnostic criteria for fracture-related infection, considering the results of any further revision surgery during follow-up. Results. 34 patients with regular healed fractures were included. 62 nonunion patients were diagnosed as aseptic, 22 with manifest, and 23 with low-grade infection. The positive predictive value was 88% and the negative predictive value 72% for the suspected diagnosis. The nonunion groups had significantly higher CRP levels than the regular healer group. Differentiation between septic and aseptic nonunion based on blood values was not possible. Low-grade infection demonstrated less frequently histopathologic signs of infection than manifest infection (22% vs. 50%, p=0.048), with 15% of regular healers having histopathologic signs of infection. Cutibacterium acnes was less present in manifest compared to low-grade infection (p=0.042). Healing rates for septic nonunion involving
Aim. We prospectively evaluated four different microbiological tools for diagnostics of prosthetic joint infections (PJI), and assessed their impact on the categorization of infection according to EBJIS guidelines. We compared culture, in-house real-time mPCR for S. aureus, S. lugdunensis, S. hominis, S. epidermidis, S. capitis, S. haemolyticus,
Aim. Prosthetic joint infection (PJI) represents the second most frequent complication of total joint arthroplasty (TJA) with up to 20% of low-grade PJI treated as aseptic failure. Sensitive diagnostic criteria have been provided by EBJIS. However, to date there is no single test to reliably diagnose all PJIs. Studies of Mazzucco et al. and Fu et al. suggest that synovial fluid (SF) viscosity could be considered as an important marker for PJI. The primary aim of our study was to determine if SF viscosity is a more reliable diagnostic criterion of PJI than the SF cell count with differential (CCD), and the combined diagnostic value of SF viscosity and CCD. Method. We prospectively analysed the viscosity of SF samples obtained during TJA of hip and knee revisions. We sampled 2.5–5mL of SF for viscosity and CCD. Intraoperatively, 1mL of the sample was analysed for the CCD. The remaining SF was centrifuged for 4min at 7000rpm. The viscosity of the supernatant was determined on Ostwald viscometer as the time required to pass the viscometer at 20°C. During each surgery at least 5 microbiological and multiple histopathological samples were harvested, and explant sonication was performed. The diagnosis was based on EBJIS definition. The viscosity threshold for detecting PJI was set at 65 seconds. Results. Between December 2020 and January 2023, we analysed 65 knee and 47 hip TJA revision procedures. There were 55 septic and 57 aseptic diagnoses. As a diagnostic marker of PJI, SF viscosity achieved 100% sensitivity and 82.5% specificity, with area under the receiver operating characteristic curve (AUC) of 0.832 (95% CI 0.739, 0.925). The specificity and sensitivity of SF CCD were 98.2% and 78.2%, respectively, with AUC of 0.921 (95% CI 0.869, 0.974). Of the 10 cases incorrectly diagnosed as aseptic based on SF viscosity, 2 were acute traumas and 8 metalloses. The SF CCD in all these cases was <0.5. Of the 12 cases incorrectly diagnosed as aseptic based on SF CCD, 6 cases were culture negative, 4
Aim. To assess the clinical characteristics, diagnostic tests and treatment strategies in orthopedic implant-associated infections (OIAI) caused by Cutibacterium spp. Method. We retrospectively included consecutive patients with OIAI caused by Cutibacterium spp. treated at our institution from January 2012 to January 2017. OIAI was diagnosed when: (i) macroscopic purulence, sinus tract or exposed implant was present; (ii) acute inflammation in peri-implant-tissue was documented; (iii) Cutibacterium spp. grew in joint aspirate, ≥2 intraoperative peri-implant tissue samples or in sonication fluid of the removed implant (>50 CFU/ml). Results. Of 67 patients with Cutibacterium OIAI, 42 (63%) had an infected joint prosthesis (21 hip, 12 shoulder, 9 knee) and 25 (37%) an infected fixation device (10 spinal hardware, 11 osteosynthesis, 2 anchorages after rotator cuff reparation, 2 cruciate ligament grafts). 53 (84%) presented with a delayed (3–24 months) or late (>24months) infection. 62 infections were caused by
This study aimed to assess the performance of an automated multiplex polymerase chain reaction (mPCR) technique for rapid diagnosis of native joint septic arthritis Consecutive patients with suspected septic arthritis undergoing aseptic diagnostic joint aspiration were included. The aspirate was used for analysis by mPCR and conventional microbiological analysis. A joint was classed as septic according to modified Newman criteria. Based on receiver operating characteristic (ROC) analysis, the area under the ROC curve (AUC) values of the mPCR and the synovial fluid culture were compared using the z-test. A total of 72 out of 76 consecutive patients (33 women, 39 men; mean age 64 years (22 to 92)) with suspected septic arthritis were included in this study.Aims
Patients and Methods