Alumina–alumina bearings are among the most resistant
to wear in total hip replacement. Examination of their surfaces
is one way of comparing damage caused by wear of hip joints simulated We found that long-term alumina wear in association with a loose
acetabular component could be categorised into three groups. Of
20 specimens, four had ‘low wear’, eight ‘crescent wear’ and eight
‘severe wear’, which was characterised by a change in the physical
shape of the bearing and a loss of volume. This suggests that the
wear in alumina–alumina bearings in association with a loose acetabular
component may be variable in pattern, and may explain, in part,
why the wear of a ceramic head
INTRODUCTION. There is increasing worldwide interest in the assessment of wear in explanted hip components. This is due is part to high profile failures of orthopaedic components in the US, whilst in the UK hip resurfacings have been experiencing a higher than expected failure rate. The reasons for these failures are not well understood, with data from the NJR suggesting the 43% of MoM resurfacing failures are unexplained. Wear analysis is a vital tool in determining failure mechanisms and ultimately improving the longevity of joint replacements through improved design and manufacturing control. There are currently no relevant measurement standards for the evaluation of retrieved orthopaedic components. This paper will assess two of the most commonly used techniques namely roundness measurement and co-ordinate measurement. The advantages and disadvantages of both techniques are considered in this paper. ROUNDNESS MACHINE. The Talyrond 365 is a stylus based roundness machine. The component is located on a rotating table and the stylus measures the deviation from a perfect circle as the component is slowly rotated. The Talyrond measures a single profile to an accuracy of 30 nm and up to 72,000 data points per revolution. The air spindle has a radial accuracy of <0.02 μm and the Talymin gauge a minimum resolution of 12 nm. Individual roundness profiles can be stitched together to build up 3D cylinder maps, allowing 3D pictures of sections of explanted hip components to be generated. COORDINATE MEASURING MACHINE. Co-ordinate measuring machines (CMMs) have been widely used in manufacturing quality and research departments for a number of years and the
Abstract. Introduction. Several studies have reported significant cobalt(Co) and chromium(Cr) elevations in the blood of patients with total-knee-replacements (TKRs), and histological signs of metal sensitivity have been reported in up to 44% of patients undergoing revision of their TKRs. We carried out this investigation to determine the source and quantity of metal release in TKRs. Methodology. We identified all TKRs with polished CoCr trays (N=59) [Vanguard=29, Attune=4 and PFC=26]. These were analysed using peer-reviewed [coordinate-measuring-machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D-profilometry (surface roughness-Ra) and 4D-microscopy. Histological and blood metal ion concentration analyses were performed. Results. The median(IQR) PE wear rate was 10(6to20) mm3/year. Microscopic analysis identified pitting on superior surface of 36(49%) trays. Ra [median (IQR)] of superior surface of pitted trays [0.076 (0.060–0.084) µm] showed a statistically significant increase (p<0.001) compared with unpitted trays [0.057(0.049–0.066) µm]. 4D-microscopy and
In an effort to understand the role of metal ion analysis and how it relates to revision surgery and implant wear, four revised MOM cases were reviewed. The first case was revised for acute infection and is representative of the low bearing wear predicted by MOM simulator studies. Two of the four cases had apparent anterior subluxation as a result of hip hyperextension occurring with long stride gaits. The last case is a true hypersensitivity response to CoCr ions. All four MOM prostheses were implanted by one surgeon and revised by the same surgeon approximately 6–8 years postoperatively. The implants had been positioned satisfactorily with inclination angles 45°–55° and anteversion angles 28°–42°. Patient A (76 y/o female) with bilateral MOM hip replacements, was revised at approximately 8 years due to infection and had moderately elevated ions at the time of revision surgery (Co = 5, Cr = 2.3, Ti = 4). Only the femoral head was retrieved in this case. Retrieval analysis identified a well defined main-wear zone and one polar stripe. The
Introduction: One of the latest groups of replacement hip joints are known as hip resurfacings and they consist of a relatively large diameter femoral head articulating within a thin acetabular cup. Many of these devices show good short to medium term clinical results. However there are concerns over such implants including fracture of the femur and possible wear debris related reactions. Much valuable data can be learnt from explanted prostheses which have ‘failed’ and then been removed from patients. As hip resurfacing prostheses have only recently been introduced, there are relatively few such retrieval studies. Methods and materials: Nineteen femoral and acetabular components from metal-on-metal hip resurfacing prostheses were obtained at revision operations. There were eight patients who had femoral fractures and the remainder experienced worsening groin pain and a characteristic sterile effusion. There were eleven head components and four pairs of matching heads and cups. Each of these was examined using a Zeiss TSK Rond-com60A roundness measuring machine and a Mitutoyo LEGEX co-ordinate measuring machine (CMM). Out of roundness measurements were taken on three planes for each acetabular and femoral component. The
Objectives. Wear debris released from bearing surfaces has been shown to
provoke negative immune responses in the recipient. Excessive wear
has been linked to early failure of prostheses. Analysis using coordinate
measuring machines (CMMs) can provide estimates of total volumetric
material loss of explanted prostheses and can help to understand
device failure. The accuracy of volumetric testing has been debated,
with some investigators stating that only protocols involving hundreds
of thousands of measurement points are sufficient. We looked to
examine this assumption and to apply the findings to the clinical
arena. . Methods. We examined the effects on the calculated material loss from
a ceramic femoral head when different
1. Fifty tibial fractures treated by intramedullary nailing during seven years have been presented. There were twenty-eight closed and twenty-two open fractures. 2. The use of the method for treating open (compound) fractures is discussed. 3. The indications for intramedullary nailing are outlined.
Abstract. Objectives. Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. A geometric model of a THR in situ was previously developed to predict impingement for different component orientations and joint motions of activities[2]. However, the consequence of any predicted impingement is unknown. This study aimed to develop an in-vitromethod to investigate the effects of different impingement scenarios. Method. A ProSim electro-mechanical single-station hip simulator (Simulation Solutions) was used, and the 32mm diameter metal-on-polyethylene THRs (DePuy Synthes) were assessed. The THR was mounted in an inverted orientation, and the input (motion and loading) applied simulated a patient stooping over to pick an object from the floor[3]. The impingement severity was varied by continuing motion past the point of impingement by 2.5° or 5°, and compressive load applied in the medial-lateral direction was varied from 100N to 200N. Each test condition was applied for 40,000 cycles (n=3). Rim penetration was assessed using a
Introduction. Highly cross-linked (HXL) polyethylene has demonstrated clinical advantages as a wear resistant acetabular bearing material in total hip arthroplasty (THA) [1]. In vitro wear testing has predicted a tenfold reduction in the wear rate of HXL polyethylene, as compared to its conventional, non-HXL counterpart [2]. To date, radiographic studies of head penetration represent the state-of-the-art in determining clinical wear of polyethylene hip liners [3]. However, as the amount of wear drops to very low levels, it becomes important to develop a precise and reliable method for measuring wear, facilitating a comparison of clinical results to expectations. This study focuses on locating and quantifying the maximum linear wear of retrieved acetabular poly liners using a coordinate measuring machine (CMM). Specifically, HXL liners are compared to a baseline of conventional, non-HXL bearings. Methods. An IRB-approved retrieval laboratory received 63 HXL acetabular bearing retrievals from 5 manufacturers with in vivo durations of 1.01–14.85 years. These were compared with 32 conventional, non-HXL controls (including gas plasma, gamma-barrier and EtO) from 3 manufacturers with in vivo durations of 1.03–20.89 years. Liners were mounted in a tripod of axial contacts with the liner face positioned in a vertical plane. Each bearing was scanned with a
INTRODUCTION. Deformation of modular acetabular press-fit shells is a topic of much interest for surgeons and manufacturer. Such modular components utilise a titanium shell with a liner manufactured from metal, polyethylene or ceramic. Initial fixation is achieved through a press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of inserting the bearing liner into the acetabular shell for modular systems. This may adversely affect the integrity and durability of the components and the tribology of the bearing. OBJECTIVE. Most clinically relevant data to quantify and understand such shell deformation can be achieved by cadaver measurements. ATOS Triple Scan III was identified as a measurement system with the potential to perform those measurements. The study aim was to validate an ATOS Triple Scan III optical measurement system against a co-ordinate measuring machine (CMM) using in-vitro testing and to check capability/ repeatability under cadaver lab conditions. METHODS. Two sizes of custom-made acetabular shells were deformed using a uniaxial/ two-point loading frame and measured repeatedly at different loads. Roundness measurements were performed using both the ATOS Triple Scan III optical system and a co-ordinate measuring machine and then compared. The repeatability was also tested by measuring shells pre and post insertion in a cadaver lab multiple times. RESULTS. The in-vitro comparison with
Introduction. Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular MoP THRs. A recent retrospective observational study (Matharu et al, 2016, BMC Musc Dis) showed that the risk of ARMD revision surgery is increasing in MoP THRs. To the authors' best knowledge, no hip simulator tests have investigated material loss from the taper-trunnion junction of contemporary MoP THRs. Methods. A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm. 3. ) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates). Results and Discussion. The mean volumetric wear rates for CoCrMo heads, XLPE liners and titanium trunnions were 0.019, 2.74 and 0.013 mm. 3. /Mc respectively. There was a statistically significant decrease (p<0.001) in the Sa of the liners post-test. This is in contrast to the femoral heads roughness in which no change was observed (p = 0.338). This head roughness result matches with a previous MoP in vitro test (Saikko, 2005, IMechE-H). The Sa of the head tapers on the worn area showed a statistically significant increase (p<0.001) compared with unworn, with an associated removal of the original machining marks. The mean volumetric wear rate of the head tapers obtained using the
Expectations for ceramic-on-metal (COM) bearings included (i) optimal lubrication due to smoother ceramic heads (ii), reduction of metal ions due to elimination of CoCr heads, and (iii) ‘differential hardness’ reducing adhesive wear and squeaking (Firkins 2001, Williams 2007). Additional benefits included (iv) use of heads larger than for ceramic-on-ceramic (COC), (v) reduction in taper corrosion and (vi) simulator studies clearly demonstrated metal ions and wear both reduced compared to MOM (Firkins 2001, Williams 2007, Ishida 2007). However, contemporary ‘3rd body wear’ paradigms focused only on metal debris size range 0.025–0.035um (Firkins 2001). Thus, neglected was the effect of hip impingement, provoking release of large metal particles sized 20–200um (Clarke 2013). In this study, we compared COM retrievals using hypotheses that adverse COM cases would demonstrate a combination of (a) steeply inclined cups, (b) liner “edge-loading”, (c) Ti6Al4V contamination on ceramic, and (d) evidence of 3rd-body CoCr wear by large particles. As a case example, this 51-year old female had her metal-polyethylene (MPE) bearing revised to COM in June 2011. She reported no symptoms 1-year post-op, but scans revealed a palpable mass in the inguinal region of left hip. By March 2013 the patient reported mild pain in her hip, which progressed to severe by April 2014. Scans showed a solid and cystic iliopsoas bursitis while cup position had changed from 43o to 73o inclination. Revision was performed in June 2014, her joint tissues were found extensively stained due to metal contamination, and histology described formation of a large pseudotumor. Analysis of retrieved components was by interferometry, SEM and EDS. Detailed maps were made of wear areas in heads and cups and volumetric wear was determined by
Introduction. Retrieved metal-on-metal acetabular components are invaluable resources from which to investigate the wear behaviour of failed hip implants. New forensic and investigative techniques continue to be developed to help the surgeon further understand factors which contribute to early failure. We have developed a novel technique to locate the in vivo location of the primary wear scar of an explanted cup. Patients/Materials & Methods. Thirteen (13) patients with failed metal hip resurfacings were recruited and their acetabular components retrieved. A 3D wear map was generated and the precise location of the primary wear scar in each cup was identified using a coordinate measuring machine (CMM). This wear scar position and location was noted in relation to standard landmarks on the acetabular cup. All patients underwent a computerised tomography (CT) scan prior to revision surgery. The 3D positional map from the
The use of fourth generation ceramic as an orthopaedic biomaterial has proved to be a very efficient and has gained popularity for primary hip surgery in the last 8–10 years. Cumulative percentage probability of revision after 7 years for un-cemented CoC is 3.09% and for hybrid CoC is 2.00%, this compares favourably with traditional metal-on-UHMWPE un-cemented at 3.05% and hybrid at 2.35% (12th Annual Report - NJR, 2015). Such ceramic-on-ceramic hip prostheses are being implanted in ever younger, more active patients, and yet very few long-term large cohort retrieval studies are yet to be carried out due to the survivorship of the implants. It has been seen in previous studies that levels of wear in ceramic-on-ceramic bearing surface can be of the order of 0.2 mm. 3. /million cycles (Al-Hajjar, Fisher, Tipper, Williams, & Jennings, 2013). This is incredibly low when compared to studies that characterize wear in other bearing surface combinations. It has also been reported that an unusual stripe pattern of wear can occur in some in-vivo retrieved cups (Macdonald & Bankes, 2014) and it has further been postulated that this is caused by cup edge loading (Walter, Insley, Walter, & Tuke, 2004). The combined measurement challenge of stripe wear occurring at the edge of a low-wear ceramic-on-ceramic device is considerable, a solution to which is presented here. Current literature on wear measurement of such cases has been confined to in-vitro simulator studies and use of gravimetric measurement which by definition has limitations due to the lack of spacial characterisation. This paper details a novel method for measuring edge-wear in CoC acetabular liners. The method has been employed in an in-vitro study where it has been benchmarked against gravimetric measurements. These liners were measured on a
The aim of this study was to reassess the rate of neurological, psoas-related, and abdominal complications associated with L4-L5 lateral lumbar interbody fusion (LLIF) undertaken using a standardized preoperative assessment and surgical technique. This was a multicentre retrospective study involving consecutively enrolled patients who underwent L4-L5 LLIF by seven surgeons at seven institutions in three countries over a five-year period. The demographic details of the patients and the details of the surgery, reoperations and complications, including femoral and non-femoral neuropraxia, thigh pain, weakness of hip flexion, and abdominal complications, were analyzed. Neurological and psoas-related complications attributed to LLIF or posterior instrumentation and persistent symptoms were recorded at one year postoperatively.Aims
Methods
Introduction. There is much current debate concerning wear and corrosion at the taper junctions of large head total hip replacements, particularly metal-on-metal hips. Is such damage a modern concern or has it always occurred in total hip replacement but not previously noted. To investigate this five explanted V40 Exeter femoral stems (Stryker Howmedica) were obtained following revision surgery at a single centre. In all cases, the 24–26 mm femoral heads were still attached. Hypothesis. In conventional ‘small head’ modular hip prostheses such as the Exeter, negligible wear and corrosion is seen at the taper junction of explanted devices. Methods. The articulating surface and the taper junction of each femoral heads was measured using a Mitutoyo LEGEX322 co-ordinate measuring machine (CMM) In each case a wear map was generated and the wear volume from the contact surface was calculated using a bespoke MATLAB program. The accuracy of such measurements has been previously shown to be within 0.5mm3. Results. Wear analysis of the articulating surfaces found unworn surfaces with each femoral head having less than 1 mm. 3. volumetric wear. All tapers had minimal wear with volumetric wear of less than 0.5 mm. 3. . Discussion and Conclusion. The wear volumes measured fall within the
The poor outcome of large head metal on metal total hip replacements (LHMOMTHR) in the absence of abnormal articulating surface wear has focussed attention on the trunnion / taper interface. The RedLux ultra-precision 3D form profiler provides a novel indirect optical method to detect small changes in form and surface finish of the head taper as well as quantitative assessment of wear volume. This study aimed to assess and compare qualitatively tapers from small and large diameter MOMTHR's. Tapers from 3 retrieval groups were analysed. Group 1: 28mm CoCr heads from MOMTHRs (n=5); Group 2: Large diameter CoCr heads from LHMOMTHRs (n=5); Gp 3 (control): 28mm heads from metal on polyethylene (MOP) THRs; n=3). Clinical data on the retrievals was collated. RedLux profiling of tapers produced a taper angle and 3D surface maps. The taper angles were compared to those obtained using
This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.Aims
Methods
Metal-on-metal retrieval studies indicated that MOM wear-rates could rise as high as 60–70mm3/year in short-term failures (Morlock, 2008). In contrast, some MOM and ceramic-on-ceramic (COC) devices of 1970's era performed admirably over 2–3 decades (Schmalzreid, 1996; Shishido, 2003). While technology has aided analysis of short-term MOM and COC failures (Morlock 2008; Lord 2011), information on successful THA remains scant. Lack of long-term data creates difficulties in setting benchmarks for simulator studies and establishing guidelines for use in standards. In this study we compared clinical and wear histories for a 30-year MOM and a 32-year COC to establish such long-term, wear-rates. The McKeeTM retrieval was cemented and made 100% of CoCr alloy (Fig. 1a). This patient had a right femoral fracture at 47 years of age, treated by internal-fixation, which failed. Her revision with a Judet implant also failed, leaving her right hip as a Girdlestone. At the age of 68, she had a McKee THA implanted in left hip, and used it until almost 98 years of age (Campbell, 2003). The COC case was a press-fit AutophorTM THA, head and cup made of alumina ceramic, with the only metal being the CoCr stem (Fig. 1c). This was implanted in a female patient 17-years of age active in sports (water-skiing). This modular THA was revised 32-years later due to hip pain from cup migration. Wear on these implants was identified by stereomicroscopy and stained red for photography (Fig. 1). Cup-to-neck impingement was denoted by circumferential neck notching, roughness was assessed by interferometry, and wear determined by
A 35-year-old female (age 35Yrs) had primary MOM total hip arthroplasty (THA) in 2008. At 8 months this patient postoperatively developed headaches, memory loss, vertigo, and aura-like symptoms that progressed to seizures. At 18 months review, she complained of progressive hip pain, a popping sensation and crepitus with joint motion. This patient weighed 284lbs with BMI of 38.5. Radiographs revealed the cup had 55° inclination, 39° anteversion (Fig. 1). Metal ion concentrations were high (blood: Co=126 mcg/L, Cr= 64mcg/L). Revision was performed in November 2010 A dark, serous fluid was observed, along with synovitis. The implants were well fixed and the femoral head could not be removed; thus the stem was removed by femoral osteotomy. With the head fused on this femoral stem, for the 1. st. time it was possible to precisely determine the habitual patterns of MOM wear relative to her in-vivo function. We investigated (1) size and location of wear patterns and (2) signs of cup-stem impingement to help explain her symptoms developed over 32 months follow-up. The retrieved MOM was a Magnum™ with head diameter 50mm and 50×56mm cup (Biomet). This was mounted on a Taperloc™ lateralized porous-coated stem. Components were examined visually and wear damage mapped by stereo-microscopy, interferometry,