The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this biomechanical study was to evaluate the effectiveness of both dynamic and stress
The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the EOS acquisition system with the
In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic
Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako
Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose”
Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose”
Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional
The syndesmosis ligament complex stabilizes the distal tibiofibular joint, while allowing for the subtle fibular motion that is essential for ankle congruity. Flexible fixation with anatomic syndesmosis reduction results in substantial improvements in functional outcomes. New dynamic
Introduction. The direct anterior approach (DAA) for total hip arthroplasty continues to gain popularity. Consequently, more procedures are being performed with the patient supine. The approach often utilizes a special leg positioner to assist with femoral exposure. Although the supine position may seem to allow for a more reproducible pelvic position at the time of cup implantation, there is limited evidence as to the effects on pelvic tilt with such leg positioners. Furthermore, the DAA has led to increased popularity of specific softwares, ie. Radlink or JointPoint, that facilitate the intra-op analysis of component position from fluoroscopy images. The aim of this study was to assess the difference in cup orientation measurements between intra-op fluoroscopy and post-op
Introduction. Component position and overall limb alignment following Total Knee Arthroplasty (TKA) have been shown to influence device survivorship and clinical outcomes. However current methods for measuring post-operative alignment through 2D radiographs and CTs may be prone to inaccuracies due to variations in patient positioning, and certain anatomical configurations such as rotation and flexion contractures. The purpose of this paper is to develop a new vector based method for overall limb alignment and component position measurements using
Flexible fixation techniques combined with anatomic (open) syndesmosis reduction have demonstrated improved functional outcomes and rates of malreduction. Suture-button devices allow physiologic motion of the syndesmosis without need for implant removal, which may lower the risk of recurrent syndesmotic diastasis. There is limited longer-term assessment of the maintenance of reduction between static and flexible syndesmotic fixation using bilateral ankle
Anterior shoulder instability is associated with osseous defects of the glenoid and/or humeral head (Hill-Sachs lesions). These defects can contribute to the pathology of instability by engaging together. There is a need to continue to develop methods to preoperatively identify engaging Hill-Sachs lesions for determining appropriate surgical management. The objective was to created a working moveable 3D
Introduction. Direct skeletal attachment of prosthetic limbs, commonly known as osseointegration (“OI”), is being investigated by our team with the goal of safely introducing this technology into the United States for human use. OI technology allows for anchorage of prosthetic devices directly to bone using an intramedullary stem. For OI to be effective and secure, bone ingrowth and remodeling around the implant must be achieved. Physicians need an effective way to measure bone remodeling in order to make informed decisions on prescribed loading. This work describes methodology that was developed that utilizes computed tomography (CT) imaging as a tool for analyzing bone remodeling around an osseointegrated implant. Method. A subject implanted with a new Percutaneous Osseointegrated Prosthesis (POP) (DJO Surgical, Austin, TX) had CTs taken of their residual femur at 6-weeks and 12-months post-op in a FDA Early Feasibility Study with Institutional Review Board approval. Three-dimensional models of the femur were created from dicom files of the
Aim. Diagnosing Fracture-Related Infections (FRI) is challenging. White blood cell (WBC) scintigraphy is considered the best nuclear imaging technique to diagnose FRI; a recent study by our group found a diagnostic accuracy of 92%. However, many centers use . 18. F-fluorodeoxyglucose positron emission tomography/computed tomography (. 18. F-FDG-PET/CT) which has several logistic advantages. Whether . 18. F-FDG-PET/
Imageless navigation is useful in acetabular cup orientation during total hip arthroplasty (THA). There is a limitation of accuracy in the imageless navigation system because of the registration method, that is, to palpate bony landmarks over the skin. To improve this limitation, ultrasound-based navigation was introduced for more precise registration of bony landmarks. We evaluated the accuracy of placement of the implant, which was measured by
Reverse shoulder arthroplasty has a high complication rate related to glenoid implant instability and screw loosening. Better radiographic post-operative evaluation may help in understanding complications causes. Medical radiographic imaging is the conventional technique for post-operative component placement analysis. Studies suggest that volumetric
INTRODUCTION. To assess and compare the effect of new orthopedic surgical procedures, in vitro evaluation remains critical during the pre-clinical validation. Focusing on reconstruction surgery, the ability to restore normal kinematics and stability is thereby of primary importance. Therefore, several simulators have been developed to study the kinematics and create controlled boundary conditions. To simultaneously capture the kinematics in six degrees of freedom as outlined by Grood & Suntay, markers are often rigidly connected to the moving bone segments. The position of these markers can subsequently be tracked while their position relative to the bones is determined using computed tomography (CT) of the test specimen with the markers attached. Although this method serves as golden standard, it clearly lacks real-time feedback. Therefore, this paper presents the validation of a newly developed real-time framework to assess knee kinematics at the time of testing. MATERIALS & METHODS. A total of five cadaveric fresh frozen lower limb specimens have been used to quantitatively assess the difference between the golden standard,
Introduction. In total hip arthroplasty, correct sizing is critical for fixation and longevity of cementless components. Previously, three-dimensional
Introduction. Navigation of acetabular component orientation is still not commonly performed despite repeated studies that show that more than ½ of acetabular components placed during hip arthroplasty are significantly mal-positioned and that intra-operative radiographic assessment is unreliable. The current study uses postoperative
Introduction. In the evaluation of patients with pre-arthritic hip disorders, making the correct diagnosis and identifying the underlying bone pathology is of upmost importance to achieve optimal patient outcomes. 3-dimensional imaging adds information for proper preoperative planning.