Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1025 - 1031
1 Aug 2008
Mizu-uchi H Matsuda S Miura H Okazaki K Akasaki Y Iwamoto Y

We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 124 - 124
1 Feb 2017
Fujii Y Fujiwara K Endou H Tetsunaga T Miyake T Yamada K Ozaki T Abe N Sugita N Mitsuishi M Takayuki I Nakashima Y
Full Access

Introduction. CT-based navigation system in total hip arthroplasty (THA) is widely used to achieve accurate implant placement. Now, we developed our own CT-based navigation system originally, and since then we have been conducting various analysis in order to use the system more effectively. We compared the accuracy of registration with this navigation system and land mark matching type navigation system. In this study, we evaluated the influence of the surgical approach to the accuracy of registration. Methods. Between June 2015 and February 2016, 28 consecutive uncemented THAs were performed in 26 patients. The preoperative diagnosis was osteoarthritis in 20 hips, osteonecrosis of the femoral hips in 5, and rheumatoid arthritis in 3. The newly developed navigation system was a CT based, surface matching type navigation system. We used newly developed navigation system and commercially available land-mark type CT-based navigation system in the setting of acetabular sockets under the same condition. After we fixed the cementless cup, we measured the cup setting angle of inclination and anteversion on each navigation system. Postoperative assessment was performed using CT one week after the operation, and measured the actual angle of the cup. Approach of operations were performed via posterolateral approach in 14 hips, and Hardinge approach in 14 hips. We calculated the absolute value of the cup angle difference between intra-operative value and post-operative value with each navigation system and compared the accuracy between each navigation system and surgical approach. Results. The mean inclination using the Land-mark type navigation(group L) was 38.3±3.8°, using our navigation system (group S) was 38.7±5.7 °, the mean anteverion on group L was 25.8±5.6°, and group S was 27.3±10.2°. The mean of actual inclination of the implants calculated by postoperative CT was 38.4±7.1°, the mean of actual anteversion was 25.8±8.3°. In comparison with the absolute value of the difference between intra-operative and post-operative date, the mean difference of inclination on group L was 6.5±5.7°, and group L was 3.7±3.1 °, the difference was significant (p<0.05). The mean difference of anteversion of group L was 4.7±4.6 °, group S was 4.0±3.3°. In group L, the mean of absolute value of the difference between intra-operative and post-operative date of inclination via Hardinge approach was 6.0±6.8°, and posterior approach was 7.9±4.5°. In group S, The mean difference of inclination via Hardinge approach was 3.0±1.8°, and posterior approach was 4.5±4.1°. In group L, The mean difference of anteversion of Hardinge approach was 4.2±4.1°, and posterior approach was 5.3±5.3°. In group S, The mean difference of anteversion of Hardinge approach was 3.8±3.5°, and posterior approach was 4.2±3.3°. Discussion. N-navi was superior on inclination of the acetabular socket setting. Considering surgical approach, the accuracy was not good via posterior approach. We should take surface matching points widely around the acetabulum, however, to take points of anterior the acetabulum via posterior approach was difficult because of the femur. It was the reason of decrease the accuracy via posterior approach. We should choose the area of surface matching points according to surgical approach to make the registration more accurate


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 125 - 125
1 Feb 2017
Fujiwara K Fujii Y Miyake T Yamada K Tetsunaga T Endou H Ozaki T
Full Access

Objectives. Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system. Materials and Methods. We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software. Results. The average distance from the surface of the cup to the edge of medial wall of pelvis was 3.4mm (0.0–8.0mm) on the axial plane which include the center of femoral head on postoperative CT. The average distance from the surface of the cup to the edge of medial wall of pelvis was 6.4mm (1.5–15.0mm) on intraoperative navigation. The average error was 2.9mm (0.0–9.0mm). The cup positions of post operative CT were deeper than that of intraoperative navigation in twenty six hips (86%). Conclusions. The shallow setting of cups caused the instability of cups. Deep setting caused damage of acetabular fossa. The positions of cups on the navigation system tend to be shown shallower than actual positions, so we should take care of deeper setting


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 65 - 65
1 Jun 2012
Fujiwara K Endo H Miyake Y Ozaki T Mitani S
Full Access

Objectives. Few reports were shown about the position of the cup in total hip arthroplasty (THA) with CT-based navigation system. We use minimally invasive surgery (MIS) technique when we perform cementless THA and the correct settings of cups are sometimes difficult in MIS. So we use CT-based navigation system for put implants with correct angles and positions. We evaluated the depth of cup which was shown on intra-operative navigation system. Materials and Methods. We treated 30 hips in 29 patients (1 male and 28 females) by navigated THA. 21 osteoarthritis hips, 6 rheumatoid arthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). Appropriate angles and positions of cups were decided on the 3D model of pelvis before operation. According to the preoperative planning, we put the implants with navigation system. We correct the pelvic inclination angle and measured the depth of cups with 3D template software. Results. The average distance from the surface of the cup to the edge of medial wall of pelvis was 3.4mm (0.0-8.0mm) on the axial plane which include the center of femoral head on postoperative CT. The average distance from the surface of the cup to the edge of medial wall of pelvis was 6.4mm (1.5-15.0mm) on intraoperative navigation. The average error was 2.9mm (0.0-9.0mm). The cup positions of post operative CT were deeper than that of intraoperative navigation in twenty six hips (86%). Conclusions. The shallow setting of cups caused the instability of cups. Deep setting caused damage of acetabular fossa. The positions of cups on the navigation system tend to be shown shallower than actual positions, so we should take care of deeper setting


Introduction. Robotic-assisted hip arthroplasty helps acetabular preparation and implantation with the assistance of a robotic arm. A computed tomography (CT)-based navigation system is also helpful for acetabular preparation and implantation, however, there is no report to compare these methods. The purpose of this study is to compare the acetabular cup position between the assistance of the robotic arm and the CT-based navigation system in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. Methods. We studied 31 hips of 28 patients who underwent the robotic-assisted hip arthroplasty (MAKO group) between August 2018 and March 2019 and 119 hips of 112 patients who received THA under CT-based navigation (CT-navi group) between September 2015 and November 2018. The preoperative diagnosis of all patients was osteoarthritis secondary to developmental dysplasia of the hip. They received the same cementless cup (Trident, Stryker). Robotic-assisted hip arthroplasty were performed by four surgeons while THA under CT-based navigation were performed by single senior surgeon. Target angle was 40 degree of radiological cup inclination (RI) and 15 degree of radiological cup anteversion (RA) in all patients. Propensity score matching was used to match the patients by gender, age, weight, height, BMI, and surgical approach in the two groups and 30 patients in each group were included in this study. Postoperative cup position was assessed using postoperative anterior-posterior pelvic radiograph by the Lewinnek's methods. The differences between target and postoperative cup position were investigated. Results. The acetabular cup position of all cases in both Mako and CT-navi group within Lewinnek's safe zone (RI: 40±10 degree; RA: 15±10 degree) in group were within this zone. Three was no significant difference of RI between Mako and CT-navi group (40.0 ± 2.1 degree vs 39.7± 3.6 degree). RA was 15.0 ± 1.2 degree and 17.0 ± 1.9 degree in MAKO group and in CT-navi group, respectively, with significant difference (p<0.001). The differences of RA between target and postoperative angle were smaller in MAKO group than CT-navi group (0.60± 1.05 degree vs 2.34± 1.40 degree, p<0.001). The difference or RI in MAKO group was smaller than in CT-navi, however, there was no significance between them (1.67± 1.27 degree vs 2.39± 2.68 degree, p=0.197). Conclusions. Both the assistance of the robotic arm and the CT-based navigation system were helpful to achieve the acetabular cup implantation, however, MAKO system achieved more accurate acetabular cup implantation than CT-based navigation system in total hip arthroplasty for the patients with OA secondary to DDH. Longer follow-up is necessary to investigate the clinical outcome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 137 - 137
1 Jan 2016
Fujii Y Fujiwara K Endou H Kagawa Y Ozaki T Abe N Sugita N Mitsuishi M Inoue T Nakashima Y
Full Access

Background. CT-based navigation system in total hip arthroplasty(THA) is widely used to achieve accurate implant placement. The purpose of this study was to evaluate the influence of initial error correction according to the differences in the shape of the acetabulum, and correction accuracy associated with operation approach after localization of registration points at anterior or posterior area of the acetabulum. Methods. We set the anterior pelvic plane(APP) as the reference plane, and defined the coordinates as follows: X-axis for external direction, Y-axis for anterior direction, and Z-axis for proximal direction. APP is defined by the anterior superior iliac spines and anterior border of the pubic symphysis. We made a bone model of bilateral acetabular dysplasia of the hip, after rotational acetabulum osteotomy(RAO) on one side, and performed registration using infrared-reflective markers. At first, we registered the initial error on navigation system, and calculated the accuracy of the error correction based on each shape of the acetabulum as we increased the surface matching points. Based on the actual operation approach, we also examined the accuracy of the error correction when concentrating the matching points in anterior or posterior areas of the acetabulum. Results. For the rotational acetabular osteotomy model, the range of possible initial error correction increased as the surface matching points increased on both X-axis and Y-axis: On the X-axis, the range increased from 6mm to 10mm as the surface matching point increased from 10 to 20; and on the Y-axis, the range increased from 2mm to 10mm as the point increased 10 to 50. The range did not increase on the Z-axis. For the acetabular dysplasia model, the range of possible initial error correction increased on the X-axis(the range increased from 2mm to 8mm as the point increased from 10 to 50); however, no increase was observed for the Y- and Z-axis. Furthermore, concentrating the surface matching points in the posterior area around the acetabulum was more effective for the correction of the initial rotational error. Discussion. Because of the different anatomical shapes of the acetabulum, the error directions that were difficult to correct tended to vary between dysplasia and post-RAO. The error correction of Z-axis was difficult on both shapes of the acetabulum. Thus, the careful initial setting on Z-axis is important to minimize the error. Surface matching point on the posterior part of the acetabulum is more effective in correcting the initial rotational error compared with the anterior part of the acetabulum. It was shown that the difference in the error correction was affected by the localization of the registration points around the acetabulum. We presumed that using surface matching points on posterior area of the acetabulum improves the accuracy of the CT-based navigation system on the anterior approach. When using the system, it is important to understand the tendency that the shape of the acetabulum and the localization of the surface matching points have influence on correction of the initial error


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 313 - 313
1 Dec 2013
Fujiwara K Endou H Okada Y Kagawa Y Ozaki T
Full Access

Objectives. The setting angle of the cup is important for achieving the stability and avoiding the dislocation after total hip arthroplasty (THA). It is difficult to set the cup at correct angle in minimally invasive THA by modified Watson-Jones approach. So we use CT-based navigation system. We evaluated the accuracy of with post-operative CT data. Materials and Methods. We treated 30 hips in 30 patients (7 male and 23 females) by navigated THA. 26 osteoarthritis hips, 2 rheumatoid arthritis hips and 2 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 3.5.2 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Kyocera Medical, Osaka). Appropriate angles and positions of cups were decided on the 3D model of hip joint before operation. According to the preoperative planning, we put the cups with navigation system and stems without navigation system. We measured the anteversion angle with post-operative CT data and 3-dimensional template software. Results. The average angle of cup inclination was 35.2 degrees on navigation system in operation. The average angle was 37.4 degrees in post-operative CT data. We calculated the deference between the inclination angle of intra-operative navigation data and the angle of post-operative CT data. The average of error was 2.2 degrees. The average angle of cup anteversion was 24.2 degrees on navigation system in operation. The average angle was 27.5 degrees in post-operative CT data. The average of error was 3.5 degrees. Conclusions. There are some reports of complications in minimally invasive THA by modified Watson-Jones approach. Anteversion angle of cup are tend to insert from relative anterior direction with this approach. We could make the error of cup setting minimize with CT-based navigation system


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 209 - 210
1 May 2006
Abe N Fujiwara K Yoshitaka T Nasu Y Date H Sakoma Y Ozaki T Inoue H
Full Access

Purpose: Minimally invasive surgery (MIS) total knee arthroplasty (TKA) makes faster rehabilitation in many cases, but it was sometimes difficult to performed the precise osteotomy and place the implants correctly due to loss of view or orientation for its small exposure. The computer-assisted navigation TKA system (CAS) was reported to achieve the optimal alignment and placement. However, it had disadvantages of longer operation time and wider exposure to acquire the reference points than these of the conventional method. Now MIS technique needs the accuracy of implant placement, on the other hand, CAS needs less-invasive methods. Among CAS methods, CT-based navigation system would have the potential for MIS because it would be referred to preoperative CT images. This study examined the accuracy of the registration with CT-based navigation system and the possibility of its application for MIS. Material and Methods: CT data were obtained from the femur and tibia of “Sawbone” (synthetic bone, Pacific Research Laboratories, Vashon, WA, USA) with a slice thickness of 1 mm. These data were transferred to Vector Vision Knee 1.5 (BrainLab Inc, Heimstettenm, Germany) and reconstructed to three-dimensional model. Two registrations were performed by a surface-matching algorithm. One is the conventional method as Vector Vision protocol; another is MIS approach which was allowed the limited area around the femoral notch and joint surface of tibia for registration. The accuracy of registration with these two methods was evaluated by Vector Vision Knee. And these registration points of these different methods were measured using a coordinate measuring machine, 3D surface scanner (Mitsutoyo, JAPAN) and were analyzed and calculated the distribution of points. Results and Discussion: There was a high degree of reproducibility of the MIS approach compared with the conventional method in the femur. However, the reference points in the distal tibia were deviated 1.5 cm to medial and thus 2.39 degree in varus would be happened at the proximal tibia in both methods. Now this software should be improving to be more accurate


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 146 - 146
1 Jun 2012
Miyake Y Fujiwara K Endo H Ozaki T Mitani S
Full Access

Objectives. Many reports were shown about the angle of the cup in total hip arthroplasty (THA) with CT-based navigation system. However, there are few reports about the position of the stem. We investigated the position of the stem in navigated THA. We evaluated the position and alignment of stem which were shown on intra-operative navigation system. Materials and Methods. We treated 10 hips in 10 patients (1 male and 9 females) by navigated THA. 7 osteoarthritis hips and 3 idiopathic osteonecrosis hips were performed THA with VectorVision Hip 2.5.1 navigation system (BrainLAB). Implants were AMS HA cups and PerFix stems (Japan Medical Materials, Osaka). The positions of stem were decided on the 3D model of femur before operation. According to the preoperative planning, we put the implants with navigation system and recorded the position. We measured the position and alignment of stem with 3D template software after operation. We checked for complications. Results. The average error of stem alignment was 0.9 degrees in anteroposterior direction, 1.2 degrees in mediolateral direction and 3.5 degrees in rotation. The average error of the distance between the tip of greater trochanter and the shoulder of stem was 1.6mm on postoperative CT. Though there were no infections and fractures, 7 cases had postoperative pain on the lesion where we insert tracker pin. Conclusions. The accuracy of longitudinal stem alignment was correct but the anteversion varies widely. We usually perform THA by minimally invasive technique. Therefore the reference points of proximal femur were restricted at narrow area for registration and the landmarks for deciding the rotational alignment were difficult to be picked up correctly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 79 - 79
1 Sep 2012
Hiranaka T Hida Y Uemoto H Doita M Tsuji M
Full Access

The ligament balance as well as the alignment is essential for successful total knee arthroplasty (TKA). However it is usually assessed and adjusted only at 0? and 90?. In order to evaluate the ligament balance at the other angles we have used a navigation system. Twenty-one patients underwent posterior stabilised mobile bearing TKA using a CT-based navigation system were included in this study. Immediately post-operation and still under anaesthesia, varus and valgus stresses were applied on operated knees manually at 0?, 30?, 60?, 90? and 120?. The ligament balance was calculated based on the angles under varus and valgus stress displayed on the navigation screen, presenting a relationship between the femoral and tibial cutting planes. The mean ligament balance angle at 0?, 30?, 60?, 90? and 120? were −2? ± 3.6?, −5.8? ± 7.9?, 5.0? ± 6.9?, −1.3? ± 5.4?, 7.9? ± 7.2?, respectively. At 0? and 90? balance was well adjusted, however in the other angles, it was quite varied. At 30? and 120?, the lateral side was loose, on the other hand, medial side was looser at 60? knee flexion angle. The good balance at 0? and 90? is understandable because the balance is assessed and adjusted in these angles. Regarding the other angles, the 30? and 120? results corresponded with previous studies; however, the 60? results did not correlate. Although the reason is unknown, it must be aware the mid-flexion and deep flexion instability is quite common. Further investigations about the impact on clinical outcomes of such instabilities and how to adjust them if they are critical are needed


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 139 - 139
1 May 2016
Yanagimoto S Yabuki Y Tuzuka M Kameyama M Nakayama S Komiyama T Okada E Morisita M Kimura Y
Full Access

Introduction. We have used CT-based navigation system for THA from 2004 (Fig, 1). The purpose is to set acetabular socket in optimal position. We have used two different matching methods in these navigation THA surgeries. The old one is Land-mark matching method (L-method), using conventional paired point matching procedure during surgery. The new one is CT-based fluoroscopy-matching system (F-method), that is new technology of image matching procedure before starting surgery (Fig. 2). We compared the accuracy of socket setting angle with these two systems and discuss the usefulness of navigation system. Material. Materials were 477 THA patients using these navigation systems. 273 cases were with L method and 204 patients were with F method. The values between verification angle by navigation system during surgery and post-operative measured angle (by X-ray or CT scan) were calculated and compared. Results. The absolute difference in L method (273 cases) was on average 3.9 +/− 3.1 degree in inclination, and 4.0 +/− 3.4 degree in anteversion. The absolute difference in F method (204 cases) was on average 2.8 +/− 2.3 degree in inclination, and 2.9 degree +/− 2.6 in anteversion. The values in F method groups showed high accuracy (P<0.01). Discussion. Accurate socket setting in THA is essential for preventing dislocation and ensuring long term usage of prosthesis. Absolute errors in socket setting with theses two navigation systems were within 4 degree on average. These results showed the usefulness of both navigation systems. F method is new technology using image matching procedure of fluoroscopy and CT-scan doing on computer (Fig. 3). F method is easy to learn actual procedure and showed high accuracy. L method is conventional procedure and needs skill to use correctly. But it needs short additional time and so it is convenient for skilled-doctor


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 91 - 91
1 May 2016
Kawate K Masuda Y Munemoto M Uchihara Y Ohneda Y Tanaka Y
Full Access

Introduction. Deformity after femoral osteotomy varies between patients. Some researchers reported good results when using cemented stems for the hips after femoral osteotomy, but there are many disadvantages that obstruct ideal fixation using cemented stems. Therefore, we developed cementless custom-made stems and inserted those using a computed tomography (CT) –based navigation system. Methods. Eighteen dysplastic hips of 15 patients after intertrochanteric osteotomy were investigated in the present study. Individual computed tomography data were used to manufacture cementless custom-made femoral stems out of Ti-6Al-4V. The proximal 1/3 of each stem was coated using porous coating covered with hydroxyapatite coating. The stems were inserted using a CT-based fluoro navigation system for accuracy of insertion. The average patient age at time of surgery was 66 years, and the average follow-up period was 3.5 years. Results. No fracture was observed during any surgery or follow-up period. The average preoperative Harris Hip Score was 44 points, and the average postoperative score was 85 points. No patient complained of postoperative thigh pain. The average difference between preoperatively planned anteversion and postoperative anteversion was 2° (range 0–5°). According to Engh's radiological classification system, there was bone ingrowth fixation in all hips. Conclusions. The technique of inserting the custom-made stems using a computed tomography-based navigation system was useful; however, there was an associated increase in manufacture time and cost


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 100 - 100
1 Aug 2013
Nakamura N Iwana D Kitada M Maeda Y Sakai T
Full Access

The occurrence of impingement can lead to instability, accelerated wear, and unexplained pain after THA. While implant and bony impingement were widely investigated, importance of soft tissue impingement was unclear. In the THA through posterior approach, it is known that posterior soft tissue repair can decrease the risk of dislocation. However, it is not known whether anterior soft tissue impingement by anterior hip capsule will influence hip ROM. The purpose of this study is to quantitatively measure the effect of anterior capsule resection on hip ROM in vivo during posterior approach THA using hip navigation system. From June 2011, 26 hips (25 patients) that underwent primary THA using Stryker CT-based hip navigation system were the subjects. All were female osteoarthritis patients and the average age at the operation was 59 (47–76) years. Intraoperatively, acetabular cup and femoral stem placement were performed through posterior approach under the navigation system. After reduction of the joint, we measured hip ROM using the same navigation system. We measured them before and after the resection of anterior hip capsule and compared the difference. After the resection of anterior hip capsule, the average increases of ROM were 0.7±3.5 degrees for flexion, 2.3±2.3 degrees for extension, 1.1±2.3 degrees for abduction and 2.1±2.9 degrees for external rotation at flexion 0 degree compared with ROM before the resection. However, it significantly increased 7.5±5.1 degrees for internal rotation at flexion 90 degree (range; −3–20, paired t-test p<0.001) and 6.1±5.5 degrees for internal rotation at flexion 45 degree (range; −4–18, p<0.001). In this study, we used navigation system for assessment of soft tissue impingement. We found that during posterior approach THA, resection of anterior hip capsule brought about significant increase of ROM, especially in the direction of flexion with internal rotation. We also found that this procedure did not change ROM of flexion, extension, abduction and external rotation. These results indicated that, during THA through posterior approach, resection of anterior hip capsule could reduce the risk of posterior instability without increasing the risk of anterior instability


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 365 - 365
1 Dec 2013
Kaneko H Hoshino Y Saito Y Tsuji T Tsukimura Y Abe H Chiba K
Full Access

Introduction:. Since2007, we have used CT-based fluoroscopy-matching navigation system (Vector Vision Hip Ver.3.5.2, BrainLAB, Germany) in revision total hip arthroplasty. This system completes the registration procedure semi-automatically by matching the contours of fluoroscopic images and touching 3 adequate points to the contours of 3D bone model created in the computer. Registration procedure using fluoroscopic figures has finished before making surgical incision. It needs no elongation time during the operation. The objective of this study was to evaluate the accuracy of CT-based fluoroscopy-matching navigation system in revision THA. Material and method:. We analysed the acetabular cup in consecutive 33 hips with both intra-operative and post-operative alignment data (based on navigation system and CT evaluation) We further compared these measurements with results from primary THA. Data for primary THA were therefore obtained from 40 consecutive patients who underwent primary THA between August 2007 and May 2013 using the same navigation system by postero-lateral approach. We aimed the cup angle for Revision THA as following, the inclination: 40 degrees, the anteversion: 20 degrees Anteversion on the navigation system must be adjusted by the pelvic tilt. Results:. There was one dislocation in 33 Revision THAs. There was no other obvious complication (nerve palsy, VTE and Infection). The all cup alignments were within 7 degrees from the preoperative orientation. In the Revision THA group the differences between the intra- and post-operative measurement of cup inclination were 2.3 ± 1.9 degrees. The differences of cup anteversion were 2.7 ± 2.5 degrees. In the primary THA group, the differences between the intra- and post-operative measurement of cup inclination were 1.9 ± 2.1 degrees. The differences of cup anteversion were 2.1 ± 2.5 degrees. There was no significant difference with two groups. Discussion:. CT-based navigation THA is very useful for severe deformity of hip osteoarthritis. We had used CT-based navigation system (landmark matching) since 2003. It needs some technical skills to improve the accuracy of landmark matching. The registration with CT-based fluoroscopy-matching navigation system is much easier and more simple than with landmark matching navigation system. CT images of revision patients included metal artifacts caused by implants. However this system is not so affected by metal artifacts. And we found this system provided high accuracy even in revision THA


Bone & Joint Open
Vol. 6, Issue 1 | Pages 3 - 11
1 Jan 2025
Shimizu A Murakami S Tamai T Haga Y Kutsuna T Kinoshita T Takao M

Aims. Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system. Methods. We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan. After propensity score matching, each group had 37 hips. Postoperative acetabular component position and orientation were measured using the planning module of the CT-based navigation system. Postoperative leg length and offset discrepancies were evaluated using postoperative CT in patients who have unilateral hip osteoarthritis. Results. The absolute differences in radiological inclination (RI) and radiological anteversion (RA) from the target were significantly smaller in rTHA (RI 1.2° (SD 1.2°), RA 1.4° (SD 1.2°)) than in nTHA (RI 2.7° (SD 1.9°), RA 3.0° (SD 2.6°)) (p = 0.005 for RI, p = 0.002 for RA). The absolute distance of the target’s postoperative centre of rotation was significantly smaller in the mediolateral (ML) and superoinferior (SI) directions in rTHA (ML 1.1 mm (SD 0.8), SI 1.3 mm (SD 0.5)) than in nTHA (ML 1.9 mm (SD 0.9), SI 1.6 mm (SD 0.9)) (p = 0.002 for ML, p = 0.042 for SI). Absolute leg length and absolute discrepancies in the acetabular, femoral, and global offsets were significantly lower in the rTHA group than in the nTHA group (p = 0.042, p = 0.004, p = 0.003, and p = 0.010, respectively). In addition, the percentage of hips significantly differed with an absolute global offset discrepancy of ≤ 5 mm (p < 0.001). Conclusion. rTHA is more accurate in cup orientation and position than nTHA, effectively reducing postoperative leg length and offset discrepancy. Cite this article: Bone Jt Open 2024;6(1):3–11


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 89 - 89
1 Mar 2013
Kaneko H Hoshino Y Saito Y Utajima D Tsuji T Tsukimura Y Abe H Chiba K
Full Access

Introduction. Since2007, we have used CT-based fluoroscopy-matching navigation system (Vector Vision Hip Ver.3.5.2, BrainLAB, Germany) in Total hip arthroplasty. This system completes the registration procedure semi-automatically by matching the contours of fluoroscopic images and touching 3 adequate points to the contours of 3D bone model created in the computer. Registration procedure using fluoroscopic figures has finished before making surgical incision. It needs no elongation time during the operation. The accuracy of navigation system depends on the techniques of registration used for the navigation and secure fixation of the dynamic reference markers. These could be affected by the different type of approaches. The objective of this study was to evaluate the accuracy of CT-based fluoroscopy-matching navigation system in THA and compare the cup position by anterolateral and posteolateral approaches. Material and method. We analysed the acetabular cup in consecutive 132 hips with both intra-operative and post-operative alignment data (based on navigation system and CT evaluation), including 65 cases with anterolateral approach(Modified Watson Jones) (Group AL) and 67 cases with posterolateral approach(Group PL). We aimed the cup angle for THA as following, the inclination: 40 degrees, the anteversion: 20 degrees. Anteversion on the navigation system must be adjusted by the pelvic tilt. Results. The average of the operative time were 84.8 ± 13.5 in group AL and 89.3 ± 15.1 minutes in group PL. There was one dislocation in group AL. There was no other obvious complication (nerve palsy, VTE and Infection) in these two groups. The all cup alignments were within 8 degrees from the preoperative orientation. The differences between the intra- and post-operative measurement of cup inclination were 1.9 ± 1.6 degrees in group AL and 2.1 ± 1.1 degrees in group PL(N.S.). The differences between the intra- and post-operative measurement of cup anteversion were 2.3 ± 1.4 degrees in group AL and 2.2 ± 1.3 degrees in group PL (N.S.). Discussion. CT-based navigation THA is very useful for severe deformity of hip osteoarthritis. We had used CT-based navigation system(landmark matching) since 2003. It needs some technical skills to improve the accuracy of landmark matching. The registration with CT-based fluoroscopy-matching navigation system is much easier and more simple than with landmark matching navigation system. And we found this system provided high accuracy even in severe deformity cases. There was no significant difference with anterolateral and posterolateral approaches by using CT-based fluoroscopy-matching navigation system


Objective

The optimal positioning of the acetabular component is a relevant prognostic factor in total hip arthroplasty (THA). Because of substantial errors of manual technique in cup placement even with experienced surgeon, computer aided navigation system has been developed in recent years. However, existence of the hardware around acetabulum likely deteriorates the accuracy of the navigation system, namely in revision THA case and postoperative status of pelvic fracture. Here we report a case who we successfully performed THA using CT based navigation system although there were multiple hardware around acetabulum due to osteosynthesis for the previous pelvic fracture.

Case presentation

A forty-one years old man presented with intolerable hip pain with severe radiographic osteoarthritic findings in left hip joint. He had sustained left pelvic fracture and posterior hip dislocation due to traffic accident and undergone osteosynthesis using multiple plates and screws when he was forty years old. However, progressive collapsing of femoral head and acetabulum occurred. Then, we indicated THA for his situation and planned to apply the CT based navigation system (Stryker CT based hip Ver.1.1 softwear and Cart II system). Preoperative workup revealed incomplete union of posterior and superior acetabular wall and we had to retain plates and screws for the stable fixation of acetabular cup. The existence of the hardware made it complicated to perform three dimensional planning and templating. Meticulous surface editing of pelvis to exclude the metal artifact and fibrocartilagenous tissue was needed to achieve accurate surface registration. In the operation room, we had to use unusual way of registration to complete two steps of registration. In the first step (roughly matching between patient's physical pelvic surface and edited pelvic surface in work station using corresponding 5 points), we utilized head of screw and hole of the plate which we could easily identify intraoperatively, in addition to ASIS and innominate groove. In the second step (strict matching using more than 30 points of pelvic surface), we had to identify the pelvic bony surface, as excluding the metal surface and fibrocartilagenous tissue such as fracture callus. These efforts enabled us to accomplish substantial accuracy of registration with RMS of 0.5 mm. Final cup orientation at the end of surgery was 41° of inclination and 25° of anteversion. Postoperative CT scan revealed that cup placement angle was 40° of inclination and 25° of anteversion, almost identical with intraoperative value.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 80 - 80
1 Oct 2012
Yanagimoto S Tezuka M Kameyama M Inoue K Nakayama S Komiyama T Okada E Takeda K Fujita Y Funayama A
Full Access

We have used CT-based total hip navigation system from 2003, to set the acetabular socket in optimal position. At first, we had used CT-based land-mark matching system. It needs matching procedure during surgery, touching paired points in surgical exposure. From 2006, we started to use new navigation system, called CT-based fluoroscopy-matching system, which was developed by BrainLAB Company (Vector-vision 2.7.1., 3.5.1.). For this new system, pre-surgical image matching procedure is need. Fluoroscopic images with 2 different directions must be taken in operation room. Then fluoroscopic images and CT reconstructive images were matched in computer with special program. Matching procedure was done before surgical incision. We compared the advantage of these two systems about technical problem, radiation exposure, time need for procedure, and accuracy. And then we discussed how to use these two different systems for THA patients. Accuracy was compared for 241 THA patients using these navigation systems. 152 cases were with CT-based land-mark matching system and 89 patients with CT-based fluoroscopy matching system. Final verification angle of acetabular socket setting in navigation during surgery was recorded for each case. The operative angle, which is referred from Murray, is used to show the socket setting angle (inclination and anteversion) in these navigation systems. Post-operative CT scan was taken to evaluate the actual socket setting angle. The values between verification angle during surgery and post-operative CT measured angle were calculated and compared statistically. Results were followed. New CT-based fluoroscopy matching method (F method): Average setting angle (operative angle) of socket in these 89 cases were 42.9 +/− 5.1 degree in inclination angle, and 28.5 +/− 7.9 degree in anteversion angle. The absolute difference in 89 cases between final verification angle and post-operative CT measurement angle was 2.9 degree (on average) +/− 2.5 degree in inclination angle, and 2.8 degree (on average) +/− 2.6 degree in anteversion angle. Conventional CT-based land-mark matching method (L method): The absolute difference in 152 cases between final verification angle and post-operative CT measurement angle was 4.2 degree (on average) +/− 3.2 degree in inclination angle, and 4.4 degree (on average), +/− 3.7 degree in anteversion angle. Absolute differences of setting angle in fluoroscopy matching groups showed statistically low compared with land-mark matching groups (P<0.01). Technical problems: L method is difficult to learn actual procedure. F method is easy to learn procedure. Image matching was done automatically by computer program. Radiation exposure during surgery: L method needs no additional radiation. F method needs radiation to get 2 fluoroscopic images. Total amount time need for navigation: L method needs extra 10 minutes during surgery in case of skilled-doctor. F method needs extra 20 minutes before starting surgery in case of all kind doctors. The accuracy of acetabular socket setting: Absolute errors in socket setting with theses two systems were within 5 degree together on average. These results showed the usefulness of both systems. Compared the accuracy between these 2 systems, F methods showed high accuracy. The accuracy of F methods is always high. It has no influence with deformity around hip joint, because fluoroscopic image matching was done with lower part of pubic bone, especially around symphysis pubis. For ordinary THA cases with skilled-doctor, CT-based land-mark matching system is useful, because this system is very convenient and needs only extra 10 minutes during surgery. For severe deformed cases with all kind doctors, CT-based fluoroscopy matching system is useful, because this system showed high accuracy even for severe deformed cases. Before surgical incision, fluoroscopic matching procedure has finished. This system needs no extra time after surgery starts


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 36 - 36
1 May 2016
Shiomi T Yamamura M Takahashi S Suzuka T Nakagawa S
Full Access

The purpose of this study was to evaluate in vivo fit and fill analysis of tapered wedge-type stem in total hip arthroplasty (THA) with computed tomography (CT)-based navigation system. 100 THAs were all performed through the posterolateral approach, with patients in the lateral decubitus position. Each cohort of 50 consecutive primary cementless THAs with was compared with and without CT-based navigation system. The post-operative antero-posterior (AP) hip radiographs were obtained two weeks after the operation. All radiographic fit and fill measurements in the proximal and distal areas were analyzed by two of the authors who were both blinded to the use of CT-based navigation system. The type of the fit in the cementless stem was divided into three types. The fit of the stem was classified as Type I, if there was both proximal and distal engagement (maximum proximal to distal engagement difference of 2 mm or greater), Type II when there was proximal engagement only, and Type III when there was distal engagement only. The fill parameters such as mean stem-to-canal ratios and mean minimum and maximum gaps between the stems to the cortical bone in proximal and distal sections were compared. There was a significantly better overall canal fit obtained by THA with CT-based navigation system compared to without the navigation system (p<0.01). With CT-based navigation system, 42 of 50 stems (84%) were categorized as Type I fit compared to 31 of 50 stems (62%) without the navigation system. As to Type II fit, There are significantly more stems without the navigation system (26%) compared to with it (12%). There were better canal fills of the stems obtained by THA with CT-based navigation system both in proximal (94%) and distal sections (88%) of the femur compared to without the navigation system (proximal 88%/distal 82%) (p<0.05). Excellent radiographic fit and fill has been previously reported to potentially correlate with improved clinical outcomes. The stems obtained by THA with CT-based navigation system had a significantly better canal fit demonstrated by higher proportion of Type I and lower proportion of Type II fits, compared to without the navigation system. The stems with the navigation system had also significantly better proximal and distal canal fill


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 6 - 6
1 Feb 2020
Ando W Hamada H Takao M Sugano N
Full Access

Introduction. Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A large diameter femoral head is also expected to reduce the dislocation rate. The purpose of this study is to investigate short-term results of BS cage in acetabular revision surgery combined with the CT-based navigation system and the use of large diameter femoral head. Methods. Sixteen hips of fifteen patients who underwent revision THA using allografts and BS cage between September 2013 and December 2017 were included in this study with the follow-up of 2.7 (0.1–5.0) years. There were 12 women and three men with a mean age of 78.6 years (range, 59–61 years). The cause of acetabular revision was aseptic loosening in all hips. The failed acetabular cup was carefully removed, and acetabular bone defect was graded using the Paprosky classification. Structural allografts were morselized and packed for all medial or contained defects. In some cases, solid allograft was implanted for segmental defects. BS cage was molded to optimize stability and congruity to the acetabulum and fixed with 6.5 mm titanium screws to the iliac bone. The inferior flange was slotted into the ischium. The upside-down trial cup was attached to a straight handle cup positioner with instrumental tracker (Figure 1) and placed on the rim of the BS cage to confirm the direction of the target angle for cement cup implantation under the CT-based navigation system (Stryker). After removing the cement spacer around the X3 RimFit cup (Stryker) onto the BS cage for available maximum large femoral head, the cement cup was implanted with confirming the direction of targeting angle. Japanese Orthopedic Association score (JOA score) of the hip was used for clinical assessment. Implant position, loosening, and consolidation of allograft were assessed using anterior and lateral radiographies of the pelvis. Results. Fifteen hips had a Paprosky IIIB defect, and one hip had a pelvic discontinuity. JOA score significantly improved postoperatively. No radiolucent lines and no displacement of BS cage could be found in 9 of 15 hips. Consolidation of allografts above the protrusion cage was observed in these patients. Displacement of BS cage (>5mm) was observed in 6 hips and displacement was stopped with allograft consolidation in 5 of 6 hips. The other patient showed lateral displacement of BS cage and underwent revision surgery. Average cup inclination and anteversion angles were 37.7±5.0 degree and 24.6±7.2 degree, respectively. 12 of 16 patients were included in Lewinnek's safe zone. One patient with 32 mm diameter of the femoral head had dislocation at 17 days postoperatively. All patients who received ≥36mm diameter of femoral head showed no dislocation. Conclusions. CT-based navigation system and the use of large femoral head may influence the prevention of dislocation in the acetabular revision surgery with BS cage for severe acetabular bone defects