Advertisement for orthosearch.org.uk
Results 1 - 20 of 59
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 25 - 25
1 Jun 2023
Pincher B Kirk C Ollivere B
Full Access

Introduction. Bone transport and distraction osteogenesis have been shown to be an effective treatment for significant bone loss in the tibia. However, traditional methods of transport are often associated with high patient morbidity due to the pain and scarring caused by the external frame components transporting the bone segment. Prolonged time in frame is also common as large sections of regenerate need significant time to consolidate before the external fixator can be removed. Cable transport has had a resurgence with the description of the balanced cable transport system. However, this introduced increasingly complex surgery along with the risk of cable weave fracture. This method also requires frame removal and intramedullary nailing, with a modified nail, to be performed in a single sitting, which raised concern regarding potential deep infection. An alternative to this method is our modified cable transport system with early intramedullary nail fixation. Internal cables reduce pain and scarring of the skin during transport and allow for well controlled transport segment alignment. The cable system is facilitated through an endosteal plate that reduces complications and removes the need for a single-stage frame removal and nailing procedure. Instead, the patients can undergo a pin-site holiday before nailing is performed using a standard tibial nail. Early intramedullary nailing once transport is complete reduces overall time in frame and allows full weight bearing as the regenerate consolidates. We present our case series of patients treated with this modified cable transport technique. Methodolgy. Patients were identified through our limb reconstruction database and clinic notes, operative records and radiographs were reviewed. Since 2019, 8 patients (5 male : 3 female) have undergone bone transport via our modified balanced cable transport technique. Average age at time of transport was 39.6 years (range 21–58 years) with all surgeries performed by the senior author. Patients were followed up until radiological union. We recorded the length of bone transport achieved as well as any problems, obstacles or complications encountered during treatment. We evaluated outcomes of full weight bearing and return to function as well as radiological union. Results. 4/8 bone defects were due to severely comminuted open fractures requiring extensive debridement. All other cases had previously undergone fixation of tibial fractures which had failed due to infection, soft tissue defects or mal-reduction. The mean tibial defect treated with bone transport was 41mm (range 37–78mm). From the start of cable transport to removal of external fixator our patients spent an average of 201 days in frame. 7/8 patients underwent a 2-week pin-site holiday and subsequent insertion of intramedullary nail 2 weeks later. One patient had sufficient bony union to not require further internal fixation after frame removal. 10 problems were identified during treatment. These included 4 superficial infections treated with antibiotics alone and 5 issues with hardware, which could be resolved in the outpatient clinic. 1 patient had their rate of transport slowed due to poor skin quality over the site of the regenerate. 4 obstacles resulted in a return to theatre for additional procedures. 1 patient had a re-do corticotomy and 3 had revision of their internal cable transport constructs due to decoupling or screw pull out. 1 patient had residual ankle joint equinus following treatment which required an Achilles tendon lengthening procedure. Another patient underwent treatment for DVT. There were no deep infections identified and no significant limb length discrepancies or deformities. Conclusions. Overall, we have found that our modified balanced cable transport technique has allowed for successful bone transport for significant defects of the tibia. We have learned from the obstacles encountered during this case series to avoid unnecessary return trips to theatre for our future transport patients. The internal cable system allowed all patients to complete their planned transport without excessive pin tract scarring or pain. Early conversion to intramedullary nail allowed for a shorter time in frame with continued full weight bearing as the regenerate consolidated. No metalwork failure or deformity has occurred in relation to docking site union. All patients have made a good return to pre-operative function during their follow-up period with no evidence of late complications such as deep infection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 29 - 29
1 Jun 2023
McCabe F Wade A Devane Y O'Brien C McMahon L Donnelly T Green C
Full Access

Introduction. Aneurysmal bone cysts commonly found in lower limbs are locally aggressive masses that can lead to bony erosion, instability and fractures. This has major implications in the lower limbs especially in paediatric patients, with potential growth disturbance and deformity. In this case series we describe radical aneurysmal bone cyst resection and lower limb reconstruction using cable transport and syndesmosis preservation. Materials & Methods. Case 1 - A 12-year-old boy presented with a two-week history of atraumatic right ankle pain. An X-ray demonstrated a distal tibia metaphyseal cyst confirmed on biopsy as an aneurysmal bone cyst. The cyst expanded on interval X-rays from 5.5cm to 8.5cm in 9 weeks. A wide-margin en-bloc resection was performed leaving a 13.8cm tibial defect. A cable transport hexapod frame and a proximal tibial osteotomy was performed, with syndesmosis screw fixation. The transport phase lasted 11 months. While in frame, the boy sustained a distal femur fracture from a fall. The femur and the docking site were plated at the same sitting and frame removed. At one-year post-frame removal he is pain-free, with full ankle dorsiflexion but plantarflexion limited to 25 degrees. He has begun graduated return to sport. Results. Case 2 - A 12-year-old girl was referred with a three-month history of lateral left ankle swelling. X-ray demonstrated an aneurysmal bone cyst in the distal fibula metaphysis. The cyst grew from 4.2 × 2.3cm to 5.2 × 3.32cm in 2 months. A distal fibula resection (6.2cm) with syndesmosis fixation and hexapod cable transport frame were undertaken. The frame was in situ for 13 weeks and during this time she required an additional osteotomy for premature consolidation and had one pin site infection. After 13 weeks a second syndesmosis screw was placed, frame removed, and a cast applied. 3 months later she had fibular plating, BMAC and autologous iliac crest bone graft for slow union. At 3 years post-operative she has no evidence of recurrence, is pain-free and has no functional limitation. Conclusions. We describe two cases of ankle syndesmosis preservation using cable transport for juxta-articular aneurysmal bone cysts. This allows wide resection to prevent recurrence while also preserving primary ankle stability and leg length in children. Both children had a minor complication, but both had an excellent final outcome. Cable bone transport and prophylactic syndesmosis stabilization allows treatment of challenging juxta-articular aneurysmal bone cysts about the ankle. These techniques are especially useful in large bone defects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 85 - 85
1 Mar 2013
van der Merwe J Coetzer P
Full Access

Background. A variety of cerclage systems are available for the fixation of periprosthetic fractures. The aim of this study was to compare the forces applied by these systems. Methods. We designed and manufactured a device to measure the forces applied to a cylindrical structure by a cerclage cable. Five different commonly used systems were evaluated. The forces exerted were measured at four different locations on the cylinder and this was compared to the force indicated by the tensioning device. Results. Only one of the devices consistently indicated the correct force. Some of the cables became frayed after being used more than twice. There was a pattern of increase in force closer to the point of crossing of the cables. Conclusion and Clinical Relevance. The true force applied to the bone is not reflected by the value indicated by the tensioning device. Some cables should not be retensioned more than twice. The device connecting the cable should be placed on the strongest part of the bone as this is the area where the maximum force is exerted. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 318 - 318
1 Mar 2013
Walsh W Salleh R Marel E Walter L Dickison D
Full Access

Introduction. Mechanical stabilization following periprosthetic fractures is challenging. A variety of cable and crimping devices with different design configurations are available for clinical use. This study evaluated the mechanical performance of 5 different cable systems in vitro. The effect of crimping device position on the static failure properties were examined using a idealized testing set up. Materials and Methods. Five cable systems were used in this study; Accord (Smith & Nephew), Cable Ready (Zimmer), Dall-Miles (Stryker), Osteo Clage (Acumed) and Control Cable (DePuy). Cables were looped over two 25 mm steel rods. Cable tension was applied to the maximum amount using the manufactures instrumentation. Devices were crimped by orthopaedic surgeon according to instructions. Crimping device/sleeve was secured in two different positions; 1. Long axis in-line with the load; 2. Long axis perpendicular to the load (Fig 1). Four constructs were tested for each cable system at each position. All constructs were tested following equilibration in phosphate buffered saline at 37 degrees Celsius using a servohydraulic testing machine (MTS 858 Bionix Testing Machine, MTS Systems) at a displacement rate of 10 mm per minute until failure. The failure load, stiffness and failure model (cable failure or slippage) was determined for all samples. Data was analysed using a two way analysis of variance (ANOVA) followed by a Games Howell post hoc test. One sample of each cable – crimping construct was embedded in PMMA and sectioned to examine the crimping mechanism. Results. In vitro mechanical performance of the five cable systems tested differed between systems. Position of the crimping device was also a significant variable which influenced the peak load, stiffness as well as failure mode. Cable failure, cable failure inside crimping sleeve as well as cable slippage was observed when the crimper was perpendicular to the applied load while cable slippage was found when the load was in line with the crimper. Peak loads of the systems ranged from well over 5 kN (Cable Ready) to 1 kN (Accord) (Fig 2). Analysis of the crimping technique varied between systems as was achieved either with direct or indirect cable compression (Fig 3). Discussion. Cable systems achieve fixation through different means as demonstrated in this study. These differences translated into different failure modes as well as a wide range of mechanical properties when tested under idealized conditions. Placement of the crimping device can influence the failure loads as noted in the current testing


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 66 - 66
1 Apr 2018
Chang C Yang C Chen Y Chang C
Full Access

For the management of displaced patellar fractures, surgical fixation using cannulated screws along with anterior tension band wiring is getting popular. Clinical and biomechanical studies have reported that using cannulated screws and a wire instead of the modified tension band with Kirschner wires improves the stability of fractured patellae. However, the biomechanical effect of screw proximity on the fixed construction remains unclear. The aim of this study was to evaluate the mechanical behaviors of the fractured patella fixed with two cannulated screws and tension band at different depths of the patella using finite element method. A patella model with simple transverse fracture [AO 34-C1] was developed; the surgical fixation consisted of two 4.0-mm parallel partial-threaded cannulated screws with a figure-of-eight anterior tension band wiring using a 1.25-mm stainless steel cable. Two different locations, including the screws 5-mm and 10-mm away from the leading edge of the patella, were used. A tension force of 850 N was applied on the patellar apexes at two loading angles (45° and 0° [parallel] to the long axis) to simulate different loading conditions while knee ambulation. The proximal side (base) of the patella was fixed, and the inferior articular surface was defined as a compression-only support in ANSYS to simulate the support from distal femur condyles. Compression-only support enables the articular surfaces of the present patella to only bear compression and no tension forces. Under different loading conditions, the fixed fractured patella yielded higher stability during 0° loading of tension force than during 45° loading. When the screws were parallel placed at the depth of 5 mm away from the patellar surface, the deformation of patellar fragment and maximum gap opening at the fracture site were smaller than those obtained by screws placed at the depth of 10 mm away from the patellar surface. Compared to the superficial screw placement, the deeper placement (10 mm) increased the maximum gap opening at the fracture site by 1.56 times under 45° loading, and 1.58 times under 0° loading. The load on the tension band wire of the 10-mm screw placement was 3.12 times (from 230 to 717 N) higher than that of the 5-mm placement. Under the wire, the contact pressure on the patellar surface was higher with the 10-mm screw placement than the 5-mm screw placement. The peak bone contact pressures with the 10-mm placement were 7.7 times (99.5 to 764 MPa) higher. This is the first numerical study to examine the biomechanical effects of different screw locations on the fixation of a fractured patella using screws and tension band. Based on a higher stability and lower cable tension obtained by the superficial screws placement, the authors recommended the superficial screw placement (5 mm below the leading edge of the patella) rather than the deep screws while fixing the transverse patellar fracture with cannulated screws and cable


Purpose. To promote rapid bone healing, an adequate stable fixation implant with a percutaneous reduction instrument should be used for Vancouver type B1 or C fractures. The objective of this study was to describe radiographic and clinical outcomes of patients with periprosthetic fracture (PPF) around a stable femoral stem, treated with a distal femoral locking plate alone or with a cerclage cable. Materials and Methods. A total of 21 patients with PPF amenable to either a reverse distal femoral locking plate (LCP DF. ®. ) alone or with a cerclage cable, with a mean age of 75.7 years, were included. In these patients, 10 fractures were treated with a reverse LCP DF. ®. alone and were classified as group I, and 11 additionally received a cerclage cable and were classified as group II.[Fig.1]. Results. Group I was not inferior to group II, as reflected by HHS evaluations. Additionally, group II had a significantly longer operation time (P = 0.019) than group I and included one patient with nonunion at the final 24-month follow-up visit after the initial fracture reduction.[Fig. 2]. Conclusion. Use of reverse LCP DF. ®. alone appears to provide advantages in the biological healing process compared with the use of reverse LCP DF. ®. with a cerclage cable. When comparing the stability of the fractures in both groups, there was no statistically significant difference, which might be attributed to the stable fixed-angle implant. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 39 - 39
1 Oct 2014
Song EK Seon JK Seol JH Kim HS Kim G
Full Access

The radiologic and clinical results of High Tibial Osteotomies (HTO) strongly rely on the accuracy of correction, and inadequate intraoperative measurements of the leg axis can lead to over or under- correction. Over the past few years, navigation systems have been proven that navigation systems provide reliable real-time intro-operative information, may increase accuracy, and improves the precision of orthopaedic surgeries. We assessed the radiological and clinical results of navigation- assisted open wedge HTO versus conventional HTO at 24 months after surgery. A total of sixty-five open wedge HTOs were performed using navigation system and compared with forty-six open HTOs that had been performed using the conventional cable technique in terms of intraoperative leg axis assess. The Orthopilot navigation system (HTO version 1.3, B. Braun Aesculap, Tuttligen, Germany) used throughout the procedure of navigated open wedge HTO. The aim of the correction was to achieve of 3°of valgus (2–4°) on both method. For the radiological evaluation, postoperative leg axes were examined using weight bearing full-leg radiography obtained at postoperative two years after surgery. To assess correction accuracies, we compared mechanical tibiofemoral angles and intersections of the mechanical axis of the tibial plateau (%) in both groups. Outliers were defined as under-corrections of < 2° of valgus and as over-corrections of > 5° of valgus. The posterior slope of the proximal tibia was measured using the proximal tibial anatomical axis (PTAA) method. HSS (Hospital for Special Surgery) scores and ROMs (ranges of motion) were evaluated and all complications were recorded and surgical and radiation times were measured. Navigated HTOs corrected mechanical axes to 2.8° valgus (range −3.1∼5.3) with few outliers (9.5%), and maintained posterior slopes (8.5±2.3° preoperatively and 11.0±2.8° postoperatively) (P>0.05). In the conventional group, the mean valgus correction was satisfactory (2.2° valgus), but only 67.4% were within the required range (2∼5° valgus), and 26.1% of cases were under-corrected and 6.5% of cases were over-corrected. Posterior slope increased from 8.0° to 10.6° on average without significant change after surgery. Total fluoroscopic radiation time during navigated HTO was 8.1 seconds (5∼12s) as compared with 46.2 seconds (28∼64 s) during conventional HTO (p<0.05). The surgery time for navigated HTO was 11.2 minutes longer than for conventional HTO (55.5 minutes). No specific complications related to the navigation were encountered. At clinical follow up, mean HSS scores of the navigated HTO and conventional groups improved to 91.8 and 92.5 from preoperative values of 55.3 and 55.9, respectively (p>0.05), and all patients achieved full ROM. Navigation for HTO significantly improved the accuracy of postoperative leg axis, and decreased the variability of correction with fewer outliers, and without any complications. Moreover, it allows multi-plane measurements to be made, in the sagittal and transverse planes as well as the frontal plane intra-operatively in real time, compensates to some extent for preoperative planning shortcomings based on radiography, and significantly reduces radiation time


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 91 - 91
1 Dec 2022
Rizkallah M Aoude A Turcotte R
Full Access

Resection of the proximal femur raises several challenges to the orthopedic oncology surgeon. Among these is the re-establishment of the abductor mechanism that might impacts on hip function. Extent of tumor resection and surgeons’ preferences dictate the reconstruction method of the abductors. While some surgeons advocate the necessity of greater trochanter (GT) preservation whenever possible, others attempt direct soft tissues reattachment to the prosthesis. Sparse data in the literature evaluated the outcomes of greater trochanter fixation to the proximal femur megaprosthesis. This is a retrospective monocentric study. All patients who received a proximal femoral replacement after tumor resection between 2005 and 2021 with a minimum follow-up of three months were included. Patients were divided into two groups: (1) those with preserved GT reattached to the megaprosthesis and (2) those with direct or indirect (tenodesis to fascia lata) abductor muscles reattachment. Both groups were compared for surgical outcomes (dislocation and revision rates) and functional outcomes (Trendelenburg gait, use of walking-assistive device and abductor muscle strength). Additionally patients in group 1 were subdivided into patients who received GT reinsertion using a grip and cables and those who got direct GT reinsertion using suture materials and studied for GT displacement at three, six and 12 months. Time to cable rupture was recorded and analyzed through a survival analysis. Fifty-six patients were included in this study with a mean follow-up of 45 months (3-180). There were 23 patients with reinserted GT (group 1) and 33 patients with soft tissue repair (group 2). Revision rate was comparable between both groups(p=0.23); however, there were more dislocations in group 2 (0/23 vs 6/33; p=0.037). Functional outcomes were comparable, with 78% of patients in group 1 (18/23) and 73% of patients in group 2 (24/33) that displayed a Trendelenburg gait (p=0.76). In group 1, 70% (16/23) used walking aids compared to 79% of group 2 (27/33) (p=0.34). Mean abductor strength reached 2.7 in group 1 compared to 2.3 in group 2 (p=0.06). In group 1, 16 of the 23 patients had GT reinsertion with grip and cables. Median survival of cables for these 16 patients reached 13 months in our series. GT displacement reached a mean of two mm, three mm, and 11 mm respectively at three, six and 12 months of follow-up in patients with grip and cables compared to 12 mm, 24 mm and 26 mm respectively at the same follow-up intervals in patients with GT stand-alone suture reinsertion(p<0.05). Although GT preservation and reinsertion did not improve functional outcomes after proximal femur resection and reconstruction with a megaprosthesis, it was significantly associated with lower dislocation rate despite frequent cable failure and secondary GT migration. No cable or grip revision or removal was recorded. Significantly less displacement was observed in patients for whom GT reattachment used plate and cables rather than sutures only. Therefore we suggest that GT should be preserved and reattached whenever possible and that GT reinsertion benefits from strong materials such as grip and cables


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 43 - 43
1 Nov 2022
Nebhani N Kumar G
Full Access

Abstract. Extended Trochanteric Osteotomy (ETO) improves surgical exposure and aids femoral stem and bone cement removal in Revision Total Hip Replacement (RTHR) surgery. The aim of this study was to identify healing rates and complications of ETO in RTHR. Methods. From 2012 to 2019 we identified patients who underwent ETO for RTHR. Data collected demographics, BMI, diabetes, anticoagulants, indication for ETO, surgical approach, length of ETO and complications. Descriptive analysis of patient demographics, multiple linear regression analysis was performed to assess ETO complications. Results. There were 63 patients with an average age of 69 years. Indications for ETO were aseptic loosening (30), infection (15), periprosthetic fracture (9), recurrent dislocation (5), broken implant (4). There were 44 cemented and 19 uncemented femoral stem that underwent ETO. Average time from index surgery was 12 years (less than a year to 38 years). All procedures were through posterolateral approach and all ETO were stabilised with cables. Average length of ETO was 12.5cm. BMI varied from 18 to 37. There were 5 diabetics and 16 on anticoagulants. All but one ETO went on to unite. Other complications included infection, dislocations, lateral thigh pain and significant limp. Discussion. Fixation of ETO can be with either wires or cables or plate with cables/screws. Advantages of cables are no irritation over greater trochanter, no disruption of gluteus medius/vastus lateralis continuity, reproducible tension in cables and use of torque limiter minimises loss of tension in cables


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 30 - 30
1 Jul 2020
Faizan A Zhang J Scholl L
Full Access

Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. CT scans of each cadaver were imported in an imaging software. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. The offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs. The CT analysis revealed that the original orientation (inclination/anteversion) of the shells implanted in 3 cadavers were as follows: Left1: 44.7°/23.3°, Right1: 41.7°/33.8°, Left2: 40/17, Right2: 31.7/23.5, Left3: 33/2908, Right3: 46.7/6.3. For the offset center shells, the shell to cable distance in all the above cases were positive indicating that there was clearance between the shells and psoas. For the hemispherical shells, in 3 out of 6 cases, the distance was negative indicating impingement of psoas. With the virtual implantation of both shell designs at orientations 40°/10°, 40°/20°, 40°/30° we found that greater anteversion helped decrease psoas impingement in both shell designs. When we analyzed the influence of inclination angle on psoas impingement by comparing wire distances for three orientations (30°/20°, 40°/20°, 50°/20°), we found that the effect was less pronounced. Further analysis comparing the offset head center shell to the conventional hemispherical shell revealed that the offset design was favored (greater clearance between the shell and the wire) in 17 out of 18 cases when the effect of anteversion was considered and in 15 out of 18 cases when the effect of inclinations was considered. Our results indicate that psoas impingement is related to both cup position and implant geometry. For an oversized jumbo cup, psoas impingement is reduced by greater anteversion while cup inclination has little effect. An offset head center cup with an anterior recess was effective in reducing psoas impingement in comparison to a conventional hemispherical geometry. In conclusion, adequate anteversion is important to avoid psoas impingement with jumbo acetabular shells and an implant with an anterior recess may further mitigate the risk of psoas impingement


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 113 - 113
1 Jul 2014
Krackow K
Full Access

Dall-Miles cables were introduced in 1985 by Stryker Orthopedics for reattachment after greater trochanteric osteotomy. Prior fixation for greater trochanteric osteotomies was obtained with stainless steel monofilament wire, routinely used by Sir John Charnley. The cables were clearly much stronger. This system consisted of a rectangular four clawed grip and two cables. Two cables were passed thru the claw and around the medial aspect of the upper femur, as well as around the neck or under the collar of a femoral component. A tensioner was devised which would distract opposite ends of one cable, and a powerful squeezing device is used to fix rigidly the cable so that it remained securely held in the claw. In addition, “sleeves” were developed—small rectangular solids made of cobalt-chrome with two parallel holes going from end to end. Two ends of cable are passed thru the holes, pulled tight and locked by using the squeezing tool, the “crimp”, which holds the cables very securely in the desired position. All of this worked much better than the wiring technique. However, it needed some additional features. The vertical pull of the abductor musculature was not optimally opposed by the cerclage aspects going thru the cross pieces in a largely lateral to medial direction. The vertical pull could relatively easily displace the trochanteric fragment. I solved this problem by incorporating a secure distal cerclage cable whose tails were taken to and passed thru the lower bar (cross piece) of the grip. The ends of this cable coming thru the lower cross piece are pulled, distracted away very tightly and the lower cross piece is crimped, holding the cable securely. That cable is then passed around the shaft of the femur and cerclaged tightly, using a simple sleeve, tightly crimped. This technique was published in this citation. Krackow, KA. A Technique for Improved Dall Miles Trochanteric Re-attachment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 78 - 78
7 Nov 2023
Sikhauli N Pietrzak JR Sekeitto AR Chuene M Almeida R Mokete L
Full Access

Hip and knee joint arthroplasty wait list has been getting outrageously long in South Africa with some tertiary hospital reporting more than 5 years of waiting time. This has been further compounded by covid 19 pandemic. There is plateau of ideas on how best to address the backlogs in high volume tertiary centers, with catchup list, out reach program, private partnership seeming unsustainable. We sought to look for sustainable solution to the problem and we looked not far but inside the system. Method. Triggered by the fire that engulfed part of the hospital, we found ourself refuged at the sister tertiary hospital with no access to theatre time. We visited districts hospitals within the cluster and discovered state of the art facility underutilized. We presented a plan to establish a satellite arthroplasty center which was greatly embraced by the management. We partnered with the trade to setup an arthroplasty service in this district hospital. Employed 3 retired nurses and 2 parttime anaesthetist all on yearly contract. We developed pathways for patient selection according to American Society of Anaesthesiologist(ASA). 232 total joint arthroplasties were performed in 15-month, 33%Hips and 67%Knees. The average hospital stay was 2,3± 2days. We had 1 mortality(# NOF) and 2 cases of PJI treated successfully with debridement antibiotic and implant retention. We had 5 cases of intraoperative calcar femur fracture managed with cables and all stable at 6weeksand 3month. Over 76% of the cases were performed by fellows as the primary surgeons. Primary hip and knee total joint replacement can be safely performed in a district hospital. Employing motivated retired staff was key to the success of this project. Fellowship trainees performed most of the operations. We suggest that other academic hospitals with long waiting list can look at emulating this model within their district


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 100 - 100
23 Feb 2023
Tran T Driessen B Yap V Ng D Khorshid O Wall S Yates P Prosser G Wilkinson M Hazratwala K
Full Access

Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a new morphometric designed stem for total hip arthroplasty (THA) against an established comparator. A prospective randomised multi-centre study of 144 primary cementless THA performed by nine experienced orthopaedic surgeons was completed (70 received a fully coated collarless tapered stem and 74 received a morphometric designed proximally coated tapered stem). PROMs and blood serum markers were assessed preoperatively and at intervals up to 2-years postoperatively. In addition, measures of femoral stem fit, fill and subsidence at 2-years post-operatively were measured from radiographs by three observers, with an intra-class correlation coefficient of 0.918. A mixed effects model was employed to compare the two prosthesis over the study period. A p-value <0.05 was considered statistically significant. Demographics, Dorr types and blood serum markers were similar between groups. Both stems demonstrated a significant improvement in PROMs between the pre- and post-operative measurements, with no difference at any timepoint (p > 0.05). The fully coated tapered collarless femoral stem had a non-significantly higher intra-operative femoral fracture rate (5.8% vs 1.4%, p = 0.24), with all patients treated with cable fixation and partial weight bearing. The mean subsidence at 2-years was 2.5mm +/- 2.3mm for the morphometric stem and 2.4mm +/- 1.8mm for the fully coated tapered collarless femoral stem (p = 0.879). There was one outlier in each group with increased subsidence (fully coated tapered collarless femoral stem 6.9mm, morphometric wedge stem 7.4mm), with both patients reporting thigh pain at 2 years. When compared with an established stem, the newer designed morphometric wedge stem performed well with comparable radiological and PROM outcomes at 2 year follow up. Continued follow-up is required for long term benchmarking


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 36 - 36
10 Feb 2023
Driessen B Yap V Ng D Korshid O Wall S Yates P Prosser G Wilkinson M Hazratwala K Tran. T
Full Access

Clinical success of prostheses in joint arthroplasty is ultimately determined by survivorship and patient satisfaction. The purpose of this study was to compare (non-inferiority) a new morphometric designed stem for total hip arthroplasty (THA) against an established comparator. A prospective randomised multi-centre study of 144 primary cementless THA performed by nine experienced orthopaedic surgeons was completed (70 received a fully coated collarless tapered stem and 70 received a morphometric designed proximally coated tapered stem). PROMs and blood serum markers were assessed preoperatively and at intervals up to 2-years postoperatively. In addition, measures of femoral stem fit, fill and subsidence at 2-years post-operatively were measured from radiographs by three observers, with an intra-class correlation coefficient of 0.918. A mixed effects model was employed to compare the two prostheses over the study period. A p-value <0.05 was considered statistically significant. Demographics and Dorr types were similar between groups. Both stems demonstrated a significant improvement in PROMs between the pre- and post-operative measurements, with no difference at any timepoint (p > 0.05). The fully coated tapered collarless femoral stem had a non-significantly higher intra-operative femoral fracture rate (5.8% vs 1.4%, p = 0.24), with all patients treated with cable fixation and partial weight bearing. The mean subsidence at 2-years was 2.5mm +/- 2.3mm for the morphometric stem and 2.4mm +/- 1.8mm for the fully coated tapered collarless femoral stem (p = 0.879). There was one outlier in each group with increased subsidence (fully coated tapered collarless femoral stem 6.9mm, morphometric wedge stem 7.4mm), with both patients reporting thigh pain at 2 years. When compared with an established stem, the newer designed morphometric wedge stem performed well with comparable radiological and PROM outcomes at 2 year follow up. Continued follow-up is required for long term benchmarking


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 309 - 309
1 Dec 2013
Frisch N Sikora-Klak J Silverton C
Full Access

Introduction:. Demand for total hip arthroplasty (THA) continues to rise and as such there is a concurrent presumed increase in the incidence of periprosthetic femoral fractures. Several studies have previously demonstrated differences in fixation technique and biomechanical advantages of various cerclage constructs in fixation of femoral periprosthetic fractures. The purpose of this study is to determine the most effective combination of cerclage materials and technique in fixation of of periprosthetic fractures during cementless THA. Methods:. Thirty fourth generation synthetic femora were tested in axial compression and torsion. Femurs were placed in a standardized mount and a press fit hip prosthesis was implanted by one senior surgeon. After broaching but prior to implant placement, a band saw was used to create a Vancouver B1 fracture below the level of the lesser trochanter. The implant was then placed in the femur. Four different cerclage constructs were then created using two of the following: 1) hose clamp, 2) metallic cable, 3) synthetic cable, 4) monofilament wire. All cables were placed using tensioning devices to standardize final cerclage tension. Additional constructs were created increasing the number of cerclage cables/wires to three and then four, evenly spaced across the implant. Axial compression and torsion were assessed to failure for all constructs using standard Instrom testing criteria. Cost analysis was performed for each construct. Results:. Data suggests that Construct 1 demonstrated superior results in both axial compression and torsion in all trials, increasing with the number of clamps used. Construct 4 demonstrated inferior results in both axial compression and torsion, although increasing the number of wires significantly increased the strength of the construct. Construct 2 and 3 were equivalent. Conclusion:. Increasing the number of cerclage cables/wires significantly increases the strength of the construct in both axial compression and torsion. Overall strength in order of strongest to weakest is as follows: hose clamp, metallic cable, synthetic cable and monofilament wire. It is reasonable to consider monofilament wires as a viable fixation option given lower cost and overall strength at physiologic loads


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 188 - 188
1 Jun 2012
Phillips J Boulton C Moran C Manktelow A
Full Access

We have identified 69 patients with Vancouver B1 periprosthetic fractures around stable femoral implants. Open reduction internal fixation is the recommended treatment; however recent studies have revealed high rates of nonunion. We have reviewed the fixation techniques utilized to treat these patients, and identified outcomes in relation to rates of union, further surgery and mortality. Patients were identified from a prospective database of all trauma admissions at Nottingham University Hospitals from 1999 to 2010. Hospital notes were independently reviewed and data retrieved. 69 patients were identified. Mean age 77 years and 63% were female. 51 (74%) occurred around total hip replacements and 18 (26%) around hip hemiarthroplasty after a previous hip fracture. Periprosthetic fracture occurred around an Exeter stem (n=18), Charnley (n=10), Austin Moore (n=15), other (n=6). 20 patients had undergone previous revision surgery. The mean time from index surgery to fracture was 58 months (median 24) around primary stems, and 48 months (median 22) around revision stems. 6 patients (9%) were treated non-operatively. Five of these had undisplaced fractures (all healed but one required revision due to loosening) and one was too unwell. 63 patients (91%) were treated by open reduction internal fixation. Of these, single plate fixation was performed in 40 cases (64%). In the vast majority of cases, lag screw fixation of the fracture with a long (>12 hole) pre-contoured 4.5mm locking plate was utilised with cables. Both locking and cortical screws were used to achieve stable fixation (Figure 1). A double plate technique was used in 16 cases (25%), where plates were placed perpendicularly to each other (laterally and anteriorly). Strut grafts were used in 13 cases (21%). 7 patients (11%) were treated with cables alone. 23 patients have subsequently died (33%). Two have been lost to follow up and three are awaiting union. There is a mean follow-up of 35 months. Deep infection occurred in 4 cases (6%). Non-union occurred in four cases (6%). Two of these were infected and one was treated with cables alone. Malunion occurred in one case treated with cables. One patient had a dislocation and two superficial infections occurred. Further surgery took place in 8 patients (12%). Three of the infected cases were revised and one underwent wound washout. The two other non-unions were revised. Three further revisions were performed: one for malunion, one for aseptic loosening (treated non-operatively) and another for a second periprosthetic fracture. Superficial wound washout was performed in one case. Mortality was 10% at 3 months, 22% at 1 year and 47% at 3 years. We have identified that union can be achieved in the majority of cases after periprosthetic fracture fixation. Cable fixation was associated with a high complication rate (7 cases: two requiring revision surgery: one nonunion, one malunion). We recommend that Vancouver B1 periprosthetic fractures are treated with meticulous technique to achieve anatomical reduction and fracture compression using lag screw technique and plating. Further mechanical support can be provided through the use of a second plate, cables and/or strut grafts


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 122 - 122
1 Jan 2016
Watanabe H Sakamoto M
Full Access

There have been numerous reports regarding “pseudotumor” associated with hip arthroplasty. We present two reports in which main etiology in the pseudotumor formation was titanium (Ti), but not cobalt-chromium (Co-Cr). We should keep in mind that Ti analysis is essential in some cases. (Case 1) A 68-year-old male presented to our institution because of right hip pain and lower extremity swelling four years after a bipolar hemiarthroplasty. MRI predicted a cystic pseudotumor. However, revision surgical findings showed no apparent cause of ARMD previously described in the literatures. Postoperative analysis showed that the metal debris mainly originated from the Ti alloy itself. (Case reports in Orthopedics, vol.2014, Article ID 209461, 4 pages). (Case 2) A 77-year-old female presented to our institution because of right hip pain and swelling six years after a total hip arthroplasty using a cable trochanteric reattchment. Plain radiographs demonstrated evidences of severe osteolysis and multiple fragments of the broken cable. However, MRI predicted a psudotumor(See Figure 1). Postoperative analysis clarified that main etiology in the pseudotumor formation was the stem mede of Ti, but not the cable made of Co-Cr


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 51 - 51
1 Jun 2018
Kraay M
Full Access

The well-fixed femoral stem can be challenging to remove. Removal of an extensively osteointegrated cementless stem requires disruption of the entire implant-bone interface while a well-fixed cemented stem requires complete removal of all adherent cement from the underlying cortical bone in both the metaphysis and diaphysis of the femur. In these situations, access to those areas of the femur distal to the metaphyseal flare that are beyond the reach of osteotomes and high speed burrs is necessary. This typically requires use of an extended femoral osteotomy (ETO). The ETO should be carefully planned so that it extends distal enough to allow for access to the end of the stem or cement column and still allow for stable fixation of a new implant. Too short of an ETO increases the risk of femoral perforation by straight burrs, trephines or cement removal instruments that cannot negotiate the bowed femoral canal to access the end of the cement column or end of the stem without risk of perforation. The ETO should also be long enough to allow for fixation with at least 2 cerclage cables. An ETO that is too distal makes implant and cement removal easier, but may not allow for sufficient fixation of a new revision femoral stem. After insertion of the revision stem, the osteotomy is reduced back around the stem and secured in place with cerclage cables


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 19 - 19
1 Dec 2016
Pagnano M
Full Access

Intraoperative fractures during primary total hip arthroplasty (THA) can occur on either the acetabular or the femoral side. A range of risk factors including smaller incision surgery, uncemented components, prior surgery, female sex, osteoporosis, and inflammatory arthritis have been identified. Acetabular fractures are rare but when they do occur often are underrecognised. It is not uncommon for intraoperative acetabular fractures to be discovered only postoperatively. Intraoperative acetabular fractures are associated with cementless implants and a number of identified anatomic risk factors. Factors related to surgical technique, including excessive under-reaming, excessive medialization with aggressive reaming, and implant designs such as an elliptical cup design are associated with higher risk. Treatment of acetabular fractures is dependent on whether they are diagnosed intraoperatively or postoperatively. When discovered intraoperatively, supplemental fixation should be added in the form of additional screw fixation, placing a pelvic plate, or using an acetabular reconstruction cage and morselised allografts. Acetabular reamings, obtained during preparation of the acetabulum, can be used for local bone graft. The goal should be stability of both the fracture and acetabular cup. Postoperatively, weight bearing and mobilization protocols may require modification, with many surgeons choosing a period of toe-touch weight-bearing in such cases. Acetabular fractures found postoperatively require the surgeon to make a judgement on the relative stability of the implant and the fracture to determine if immediate revision surgery or protected weight-bearing alone is appropriate. On the femoral side intraoperative fractures can occur around the greater trochanter, the calcar, or in the diaphysis. Fractures of the greater trochanter are problematic because of their tendency to displace due to the attachment of the abductors and the strong force they apply. Tension band wiring techniques will work for many greater trochanteric fractures while a trochanteric plate may be occasionally called for. With either form of fixation strong consideration should be given to 6–8 weeks of protected weight bearing postoperatively. Short longitudinal cracks in the medial calcar region are not rare with uncemented implants. Calcar fractures that do not extend below the lesser trochanter can often be managed with a single cerclage cable. Calcar fractures extending below the lesser trochanter should be scrutinised with additional intraoperative xrays; longer longitudinal cracks can be managed with 2 cables while more complex fractures that exit the diaphysis demand a change to a distally fixed implant and formal fracture reduction. Distal diaphyseal fractures are relatively uncommon in the primary setting, but not rare in the revision setting. When recognised intraoperatively, distal diaphyseal fractures can be treated effectively with cerclage cables. Distal diaphyseal longitudinal cracks noted postoperatively do not typically mandate a return to the OR and instead can be managed with 8 weeks of protected weight bearing


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 19 - 19
1 Feb 2015
Berend M
Full Access

Perioperative fracture during routine THA represents one of the “not so fresh” feelings that occur for both patients and surgeons. With the increase in the use of uncemented implants and MIS techniques this truly is a problem on the rise. We have examined and quantified the risk factors associated with proximal femoral fracture during THA. Risk factors (risk ratios) identified were: uncemented stems (8.9), anterolateral approach (7.4) and female gender (2.2). Fortunately, treatment with cerclage wiring for uncemented stems has facilitated excellent stem stability and acceptable survivorship with many different femoral component designs. Reduced proximal geometry stems that better match the endosteal osseous anatomy have reduced fracture rates at our institution and maintained excellent stem survivorship. New data examining this design will be presented. In our series, cemented stems, however, had decreased survivorship in the presence of a proximal femoral fracture. MIS techniques may accelerate rehabilitation but they certainly permit limited visibility of the proximal femoral and acetabular anatomy and may result in less accurate component position. Relatively high fracture rates in series of MIS-THA have been reported. A bigger concern, however, is the unrecognised fracture that displaces postoperatively and requires a return to surgery for treatment with or without revision and mandates that we “see it before it sees us!” Cerclage wiring with looped Luque wires has been our treatment of choice for many years. Wires are significantly less expensive than cables and have proven to be durable in our series. This technique allows intraoperative repositioning and variable tightening in multiple locations. Cable fretting and breakage have been common in our experience with braided cable devices. Acetabular fracture during uncemented THA is most likely an under-reported occurrence and has been associated with elliptical component designs and under-reaming. In the presence of a stable cup, long-term performance has been acceptable