Arthroscopic hip procedures have increased dramatically over the last decade as equipment and techniques have improved. Patients who require hip arthroscopy for femoroacetabular impingement on occasion require surgery on the contralateral hip. Previous studies have found that younger age of presentation and lower Charlson comorbidity index have higher risk for requiring surgery on the contralateral hip but have not found correlation to anatomic variables. The purpose of this study is to evaluate the factors that predispose a patient to requiring subsequent hip arthroscopy on the contralateral hip. This is an IRB-approved, single surgeon retrospective cohort study from an academic, tertiary referral centre. A chart review was conducted on 310 primary hip arthroscopy procedures from 2009-2020. We identified 62 cases that went on to have a hip arthroscopy on the contralateral side. The bilateral hip arthroscopy cohort was compared to unilateral cohort for sex, age, BMI, pre-op alpha angle and centre edge angle measured on AP pelvis XRay, femoral torsion, traction time, skin to skin time, Tonnis grade, intra-op labral or chondral defect. A p-value <0.05 was deemed significant. Of the 62 patients that required contralateral hip arthroscopy, the average age was 32.7 compared with 37.8 in the unilateral cohort (p = 0.01) and BMI was lower in the bilateral cohort (26.2) compared to the unilateral cohort (27.6) (p=0.04). The average alpha angle was 76.3. 0. in the bilateral compared to 66. 0. in the unilateral cohort (p = 0.01). Skin to skin time was longer in cases in which a contralateral surgery was performed (106.3 mins vs 86.4 mins) (p=0.01). Interestingly, 50 male patients required contralateral hip arthroscopy compared to 12 female patients (p=0.01). No other variables were statistically significant. In conclusion, this study does re-enforce existing literature by stating that younger patients are more likely to require contralateral hip arthroscopy. This may be due to the fact that these patients require increased range of motion from the hip joint to perform activities such as sports where as older patients may not need the same amount of range of motion to perform their activities. Significantly higher alpha angles were noted in patients requiring contralateral hip arthroscopy, which has not been shown in previous literature. This helps to explain that larger
With the growing number of individuals with asymptomatic cam-type deformities, elevated alpha angles alone do not always explain clinical signs of femoroacetabular impingement (FAI). Differences in additional anatomical parameters may affect hip joint mechanics, altering the pathomechanical process resulting in symptomatic FAI. The purpose was to examine the association between anatomical hip joint parameters and kinematics and kinetics variables, during level walking. Fifty participants (m = 46, f = 4; age = 34 ± 7 years; BMI = 26 ± 4 kg/m²) underwent CT imaging and were diagnosed as either: symptomatic (15), if they showed a
The literature indicates that femoroacetabular impingement (FAI) patients do not return to the level of controls (CTRL) following surgery. The purpose of this study was to compare hip biomechanics during stair climbing tasks in FAI patients before and two years after undergoing corrective surgery against healthy controls (CTRL). A total of 27 participants were included in this study. All participants underwent CT imaging at the local hospital, followed by three-dimensional motion analysis done at the human motion biomechanics laboratory at the local university. Participants who presented a
Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity always leads to arthrosis if uncorrected. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. The earlier PAO series show 20 year survivorship of 81% and 65% in Tonnis Grade 0 and 1 hips. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth.
Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity always leads to arthrosis if uncorrected. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Preoperative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth.
Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity, if left uncorrected, always leads to arthrosis. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth.
Surgical invention to preserve the native hip joint remains a preferred treatment option for hips in young patients with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The two most common pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity, if left uncorrected, always leads to arthrosis. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement, if present. Correction of deformities on the femoral side is now less common and reserved for only the more severe combined femoral and acetabular dysplasias or the rare isolated femoral dysplasia. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth.
Introduction. Bony deformities in the hip that cause femoroacetabular impingement (FAI) can be resected in order to delay the onset of osteoarthritis and improve hip range of motion. However, achieving accurate osteoplasty arthroscopically is challenging because the narrow hip joint capsule limits field of view. Recently, image-based navigation using a preoperative plan has been shown to improve the accuracy of femoral bone surfaces following arthroscopic osteoplasty for FAI. The current standard for intraoperative monitoring, 3D x-ray fluoroscopy, is accurate at the initial registration step to within 0.8±0.5mm but involves radiation. Intraoperative 3D ultrasound (US) is a promising radiation-free alternative for providing real-time visual feedback during FAI osteoplasty. The objective was to determine if intraoperative 3D US of the femoral head/neck region can be registered to a CT-based preoperative plan with comparable accuracy to fluoroscopic navigation in order to visualise progress during arthroscopic FAI osteoplasty. Methods. The experiment used a plastic femur model that had a
Surgical management of cam-type femoroacetabular impingement (FAI) aims to preserve the native hip, restore joint function, and delay the onset of osteoarthritis. However, it is unclear how surgery affects joint mechanics and hip joint stability. The aim was to examine the contributions of each surgical stage (i.e., intact cam hip, capsulotomy, cam resection, capsular repair) towards hip joint centre of rotation and microinstability. Twelve fresh, frozen cadaveric hips (n = 12 males, age = 44 ± 9 years, BMI = 23 ± 3 kg/m2) were skeletonized to the capsule and included in this study. All hips indicated cam morphology on CT data (axial α = 63 ± 6°, radial α = 74 ± 4°) and were mounted onto a six-DOF industrial robot (TX90, Stäubli). The robot positioned each hip in four sagittal angles: 1) Extension, 2) Neutral 0°, 3) Flexion 30°, and 4) Flexion 90°, and performed internal and external hip rotations until a 5-Nm torque was reached in each direction, while recording the hip joint centre's neutral path of translation. After the (i) intact hip was tested, each hip underwent a series of surgical stages and was retested after each stage: (ii) T-capsulotomy (incised lateral iliofemoral capsular ligament), (iii) cam resection (removed morphology), and (iv) capsular repair (sutured portal incisions). Eccentricity of the hip joint centre was quantified by the microinstability index (MI = difference in rotational foci / femoral head radius). Repeated measures ANOVA and post-hoc paired t-tests compared the within-subject differences in hip joint centre and microinstability index, between the testing stages (CI = 95%, SPSS v.24, IBM). At the Extension and Neutral positions, the hip joint centre rotated concentrically after each surgical stage. At Flexion 30°, the hip joint centre shifted inferolaterally during external rotation after capsulotomy (p = 0.009), while at Flexion 90°, the hip joint centre further shifted inferolaterally during external rotation (p = 0.005) and slightly medially during internal rotation after cam resection, compared to the intact stages. Consequently, microinstability increased after the capsulotomy at Flexion 30° (MI = +0.05, p = 0.003) and substantially after cam resection at Flexion 90° (MI = +0.07, p = 0.007). Capsular repair was able to slightly restrain the rotational centre and decrease microinstability at the Flexion 30° and 90° positions (MI = −0.03 and −0.04, respectively). Hip microinstability occurred at higher amplitudes of flexion, with the cam resection providing more intracapsular volume and further lateralizing the hip joint during external rotation. Removing the
When patients present at an early age with osteoarthritis of the hip, there is usually an underlying predisposing cause. In men, a common cause is femoroacetabular impingement (FAI). This is evident as anterior neck osteophytes, with retroversion and varus alignment of the femoral head, most likely the result of subclinical slipped capital femoral epiphysis. The resulting femoroacetabular
There are three major diagnoses that have been associated with early hip degeneration and subsequent hip replacement in young patients: FAI, hip dysplasia and hip osteonecrosis. I will focus mainly on the first two. Both conditions, if diagnosed early in the symptomatic patient, can be surgically treated in order to try to prevent further hip degeneration. But, what is the natural history of these disorders?. Our recent paper published this year described the natural history of hip dysplasia in a group of patients with a contralateral THA. At an average of 20 years, 70% of hips that were diagnosed at Tönnis Grade 0, had progression in degenerative changes with 23% requiring a THA at 20 years. Once the hip degeneration progressed to Tönnis 1, then 60% of hips progressed and required a THA. This natural history study demonstrates that degeneration of a dysplastic hip will occur in over 2/3 of the hips despite the limitations of activity imposed by a contralateral THA. In this same study, we were unable to detect a significant difference in progression between FAI hips and those categorised as normal. FAI damage has been commonly considered to be “motion-induced” and as such, the limitations imposed by the THA, might have limited the progression in hip damage. Needless to say, progression was seen in about half of the hips at 10 years, but very few required a THA at final follow-up. We have recently presented data on a group of young asymptomatic teenagers with FAI. At 5 years of follow-up, the group of patients with limited ROM in flexion and internal rotation,
The purpose of this study was to investigate whether patients who had had excision of the Ligamentum Teres as part of a surgical hip dislocation for femoro-acetabular impingement exhibited symptoms of acute Ligamentum Teres rupture post-operatively. Recent reports in the literature suggest that injury to the Ligamentum Teres can cause instability, severe pain and inability to walk. We present the results of a postal questionnaire to 217 patients who had undergone open surgical hip dislocation for femoro-acetabular impingement where the LT was excised. This included seven patients who had undergone bilateral surgery. The questionnaire was designed to enquire about specific symptoms attributed to LT injuries in the literature; gross instability, incomplete reduction, inability to bear weight and mechanical symptoms. 161 patients responded (75%), with a total of 168 (75%) questionnaires regarding 224 hips completed. There were 104 females and 64 males. Median age was 34 and median follow-up was 52 months. All patients were found to have
Introduction. Femoro-acetabular impingement (FAI) is a common source of impaired motion of the hip, often attributed to the presence of an aspherical femoral head. However, other types of femoral deformity, including posterior slip, retroversion, and neck enlargement, can also limit hip motion. This study was performed to establish whether the “cam” impinging femur has a single deformity of the head/neck junction or multiple abnormalities. Materials and Methods. Computer models of 71 femora (28 normal and 43 “cam” impinging) were prepared from CT scans. Morphologic parameters describing the dimensions of the head, neck, and medullary canal were calculated for each specimen. The anteversion angle, alpha angle of Notzli, beta angle of Beaulé, and normalized anterior heads offset were also calculated. Average dimensions were compared between the normal and impinging femora. Results. Compared to the normal controls, the impinging femora had wider necks (AP: 15.2 vs 13.3 mm, p<0.0001), larger heads (diameter: 48.3mm vs 46.0mm, p=0.032) and decreased head/neck ratios (1.60 vs 1.74, p=0.0002). However, there was no difference in neck/shaft angle (125.7° vs 126.5°, p=0.582) or anteversion angle (8.70 vs 8.44°, p=0.866). Most significantly, 53% of impinging femora also had a significant posterior slip (>2mm), compared to only 14% of normal controls. Average head displacements for the two groups were: FAI: 1.93mm vs Normals: 0.78mm (p<0.0001). Conclusions. The
Introduction:. Cam type femoroacetabular impingement (FAI) may lead to osteoarthritis (OA)[1]. In 2D studies, an alpha angle greater than 55° was considered abnormal however limitations of 2D alpha angle measurement have led to the development of 3D methods [2–4]. Failure to completely address the bony impingement lesions during surgery has been the most common reason for unsuccessful hip arthroscopy surgery [5]. Robotic technology has facilitated more accurate surgery in comparison to the conventional means. In this study we aim to assess the potential application of robotic technology in dealing with this technically challenging procedure of cam sculpting surgery. Methods:. CT scans of three patients' hips with severe
INTRODUCTION. Symptomatic hip disorders associated with
Introduction. Herniation pits had been considered as a normal variant, a cystic lesion formed by synovial invagination. On the contrary, it was also suggested that herniation pits were one of the diagnostic findings in femoroacetabular impingement (FAI) because of the high prevalence of herniation pits in the FAI patients. To date, the exact etiology is still unknown. The purpose of this study was to evaluate whether there is an association between the presence of herniation pits and morphological indicators of FAI based on computed tomography (CT) examination. Materials and methods. We reviewed the CT scans of 245 consecutive subjects (490 hips, age: 21–89 years) who had undergone abdominal and pelvic CT for reasons unrelated to hip symptom from September, 2010 to June, 2011. These subjects were mainly examined for abdominal disorders. We confirmed by the questionnaire survey that there were no subjects who had symptoms of hip joints. We reviewed them for the presence of herniation pits and the morphological abnormalities of the femoral head and acetabulum. Herniation pits were diagnosed when they were located at the anterosuperior femoral head-neck junction with a diameter of more than 3 mm. We measured following four signs as indicators for FAI: α angle, center edge angle (CE angle), acetabular index (AI), and acetabular version. Mann-Whitney U-test was used for statistical analysis. Results. Herniation pits were identified in 61 of the 245 subjects or, with respect to individual hips, in 85 (17%) of 490 hips. The prevalence of herniation pits in younger subjects (<60 years, 240 hips) and elderly subjects (≥60 years, 250 hips) were 16.3% and 18.4%, respectively. Among 85 hips, the mean diameter of herniation pits was 5.9 ± 2.4 mm and it was significantly larger (p<0.01) in the elderly subjects (7.1 ± 2.4 mm) than in the younger subjects (4.7 ± 1.7 mm). In terms of the α angle, there were significant differences between the group with (49.8 ± 16.6°) and without herniation pits (40.7 ± 6.7°) in the elderly subjects, whereas not significantly different among the younger subjects. Measurements of the acetabular coverage (CE angle, AI) and the acetabular version showed no significant difference between the subject with and without herniation pits. Discussion. In the present study, the prevalence of herniation pits was 17% in asymptomatic Japanese general population. The fact that the size of the herniation pits enlarge with age may suggest these cystic lesions have degenerative characteristics with no association with FAI. Although large α angles have been recognized as a predictor of