Aims. Osteochondral lesions of the talus (OLT) are a common cause of disability and chronic ankle pain. Many operative treatment strategies have been introduced; however, they have their own disadvantages. Recently lesion repair using autologous
Introduction. The prevalence of symptomatic osteoarthritis (OA) in the knee is 11–11% compared to 3.4–4.4% in the ankle. In addition to this, 70% of ankle arthritis is post-traumatic while the vast majority of knee arthritis is primary OA. Several reports have previously implicated biochemical differences in extracellular matrix composition between these joint cartilages; however, it is unknown whether there is an inherent difference in their transcriptome and how this might affect their respective functionality under load, inflammatory environment etc. Therefore, we have analysed the transcriptome of ankle and knee
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
We have evaluated the clinical effectiveness
of a metal resurfacing inlay implant for osteochondral defects of
the medial talar dome after failed previous surgical treatment.
We prospectively studied 20 consecutive patients with a mean age
of 38 years (20 to 60), for a mean of three years (2 to 5) post-surgery.
There was statistically significant reduction of pain in each of
four situations (i.e., rest, walking, stair climbing and running;
p ≤ 0.01). The median American Orthopaedic Foot and Ankle Society
ankle-hindfoot score improved from 62 (interquartile range (IQR)
46 to 72) pre-operatively to 87 (IQR 75 to 95) at final follow-up
(p <
0.001). The Foot and Ankle Outcome Score improved on all
subscales (p ≤ 0.03). The mean Short-Form 36 physical component
scale improved from 36 (23 to 50) pre-operatively to 45 (29 to 55)
at final follow-up (p = 0.001); the mental component scale did not
change significantly. On radiographs, progressive degenerative changes
of the opposing tibial plafond were observed in two patients. One
patient required additional surgery for the osteochondral defect.
This study shows that a metal implant is a promising treatment for
osteochondral defects of the medial talar dome after failed previous
surgery. Cite this article:
Studies have compared outcomes of first metatarsophalangeal joint (MTPJ1) implant hemiarthroplasty and arthrodesis, but there is a paucity of data on the influence of patient factors on outcomes. We evaluated data from a prospective, RCT of MTPJ1 implant hemiarthroplasty (Cartiva) and arthrodesis to determine the association between patient factors and clinical outcomes. Patients ≥18 years with Coughlin hallux rigidus grade 2, 3, or 4 were treated with implant MTPJ1 hemiarthroplasty or arthrodesis. Pain VAS, Foot and Ankle Ability Measure (FAAM) Sports and ADL, and SF-36 PF scores were obtained preoperatively, and at 2, 6, 12, 24, 52 and 104 weeks postoperatively. Final outcomes, MTPJ1 active peak dorsiflexion, secondary procedures, radiographs and safety parameters were evaluated for 129 implant hemiarthroplasties and 47 arthrodeses. Composite primary endpoint criteria for clinical success included pain reduction ≥30%, maintenance/improvement in function, and no radiographic complications or secondary surgical intervention at 24 months. Predictor variables included: grade; gender; age; BMI; symptom duration; prior MTPJ1 surgery; preoperative hallux valgus angle, ROM, and pain. Two-sided Fisher's Exact test was used (Introduction
Methods
Introduction. Autologous Matrix Induced Chondrogenesis (AMIC) for surgical treatment of osteochondral lesions of the talus (OCLT) has shown excellent clinical and radiological results at short term follow up two years after surgery. However, no mid-term follow up data is available. Aim. 1. To evaluate the clinical outcome after AMIC-aided reconstruction of osteochondral lesions of the talus at a minimum follow up time of five years. 2. To evaluate the morphology and quality of the regenerated
Introduction. The current treatment for Freiberg's osteochondrosis centres around either: simple debridement or debridement osteotomy. The main principle of the osteotomy is to rotate normal articular cartilage into the affected area. We recommend the use of CT scanning to delineate the amount of available, unaffected
Introduction/Purpose. A randomized clinical trial of first MTP joint hemiarthroplasty with a synthetic cartilage implant demonstrated equivalent pain, function and safety outcomes to first MTP joint arthrodesis at 2 years. Recognizing that many hemiarthroplasty and total toe implants have initially good results that deteriorate over time, the purpose of this study was to prospectively assess the safety and efficacy outcomes for the synthetic cartilage implant population and to determine if the excellent outcomes were maintained at >5 years. Methods. One hundred nineteen patients were evaluated at 5+ years; 23 could not be reached for follow-up, but implant status was available for 7 of these subjects. Patients completed a pain visual analogue scale (VAS) and Foot and Ankle Ability Measure (FAAM) Sports and Activities of Daily Living (ADL) scores, preoperatively and at 2, 6, 12, 26, 52, 104 and 260 weeks postoperatively. Minimal clinically important differences are: ≥30% difference for pain VAS, 9 points for FAAM Sports, and 8 points for FAAM ADL. Great toe active dorsiflexion, weight-bearing radiographs, secondary procedures, and safety parameters were evaluated. Results. Of 119 patients available at mean 5.8 years follow-up (SD ±0.7; range: 4.4–8.0), 9 underwent implant removal and conversion to fusion in years 2–5, leaving 106 patients. The implant survival rate was 92.4% at 5.8 years. Pain and function outcomes at 5.8 years were similar to those at 2 years. VAS Pain, FAAM Sports, ADL Scores were maintained or improved at 5.8 years. No evidence of avascular necrosis, device migration or fragmentation was observed. There were no unanticipated safety events through 5.8 years. Ninety-three (93%) percent would have the procedure again. Conclusion. The synthetic
Aims. The aim of this study was to evaluate antegrade autologous bone
grafting with the preservation of articular cartilage in the treatment
of symptomatic osteochondral lesions of the talus with subchondral
cysts. Patients and Methods. The study involved seven men and five women; their mean age was
35.9 years (14 to 70). All lesions included full-thickness articular
cartilage extending through subchondral bone and were associated
with subchondral cysts. Medial lesions were exposed through an oblique
medial malleolar osteotomy, and one lateral lesion was exposed by
expanding an anterolateral arthroscopic portal. After refreshing
the subchondral cyst, it was grafted with autologous cancellous
bone from the distal tibial metaphysis. The fragments of cartilage
were fixed with 5-0 nylon sutures to the surrounding
Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus. Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.Aims
Methods
The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD. The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted.Aims
Methods
This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation. A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.Aims
Methods
Osteoarthritis (OA) is a disease of the joints stemming from a variety of factors, including joint injuries and abnormally high mechanical loading. Although the traditional treatment alternatives for end-stage OA are arthroplasty in the case of the hip and knee, and arthroplasty or arthrodesis in the case of the ankle, these options are not ideal for younger, more active patients. For these patients, joint prostheses would be expected to fail relatively quickly, and ankle fusion is not amenable to maintaining their active lifestyles. In these cases, joint distraction has attracted investigative attention as a conservative OA treatment for younger patients. 9-14. . Based on the principle that decreasing the mechanical load on
It is recognised that as the severity of hallux valgus (HV) worsens, so do the clinical and radiological signs of arthritis in the first metatarsophalangeal joint. However, few studies specifically document the degenerate changes. The purpose of this study is to determine if intraoperative mapping of articular erosive lesions of the first MTP joint can be correlated to clinical and/or radiographic parameters used during the preoperative assessment of the HV deformity. Materials & Methods. We prospectively analysed 50 patients who underwent surgery between Jan 2009 & Jan 2010. Patients with a known history of previous first metatarsophalangeal joint surgical intervention, trauma, or systemic arthritis were excluded from analysis. Preoperative demographics and AOFAS scores were recorded. Radiographic measurements were obtained from weight bearing radiographs. Intraoperative evaluation of the first metatarsal head, base of the proximal phalanx, and sesamoid articular cartilage erosion was performed.
Introduction. A randomized clinical trial of first metatarsophalangeal (MTP) joint hemiarthroplasty with a synthetic cartilage implant demonstrated equivalent pain, function and safety outcomes to first MTP joint arthrodesis at 2 years. The implant cohort continues to be followed under an extension of the original study and we report on prospectively determined 5+ year outcomes for subjects assessed to date. Methods. Patients treated with hemiarthroplasty implant as part of the previously mentioned trial are eligible for enrollment in the extended study (n=135). At the time of this report, 57 patients had reached the 5+ years postoperative time point, of which 5 were lost to follow-up. The remaining 52 patients with mean age of 58.5 (range, 38.0–0.0) underwent physical examination, radiographic evaluation, assessment of implant survivorship and collection of patient completed VAS pain, and Foot and Ankle Ability Measure (FAAM) sports subscale and activities of daily living (ADL) subscale scores. Mean follow-up is 5.8 (range, 4.8–8.4) years. Results. Patient reported pain and function outcome measures showed clinically and statistically meaningful improvements over baseline at 5.8 years. Mean VAS pain scores decreased 57.9 points (86% pain reduction). The mean FAAM Sports and ADL subscale scores increased from baseline 47.9 points (126%) and 32.7 points (55%) respectively. Patients maintained first MTP joint motion with mean active peak MTP dorsiflexion of 25.9° (range, 0–0°) which was a 3° improvement from baseline. Implant survivorship at 5.8 years was 92%; four were converted to fusion because of persistent pain at mean time 42 months post-operation (range, 26–26 months). These results are equivalent to the outcomes reported at 2 years follow-up. 1. Conclusion. The synthetic
The hypothesis of this study was that bone peg fixation in the treatment of osteochondral lesions of the talus would show satisfactory clinical and radiological results, without complications. Between September 2014 and July 2017, 25 patients with symptomatic osteochondritis of the talus and an osteochondral fragment, who were treated using bone peg fixation, were analyzed retrospectively. All were available for complete follow-up at a mean 22 of months (12 to 35). There were 15 males and ten females with a mean age of 19.6 years (11 to 34). The clinical results were evaluated using a visual analogue scale (VAS) and the American Orthopaedic Foot and Ankle Society (AOFAS) score preoperatively and at the final follow-up. The radiological results were evaluated using classification described by Hepple et al based on the MRI findings, the location of the lesion, the size of the osteochondral fragment, and the postoperative healing of the lesion.Aims
Methods
In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol.Aims
Methods
Introduction. Mesenchymal stem cells (MSCs) are a potential source of cells for the repair of articular cartilage and osteochondral defects (OCD) in the ankle. Synovial tissue has been shown to be a rich source of MSCs with the ability to undergo chondrogenic differentiation. Although these cells represent a heterogenous population, clonal populations have not been previously studied. Methods. MSCs were isolated from synovial tissue of a patient undergoing joint arthroplasty and expanded in culture. Six clonal populations were also isolated and expanded. The cells from the mixed parent population and the derived clonal populations were characterised for stem cell surface epitopes, and then cultured in chondrogenic mediums. Various assays were determined to analyse for features of differentiation. Results. Cells from the mixed parent population and the derived clonal populations stained strongly for markers of adult mesenchymal stem cells including CD44, CD90 and CD105, and they were negative for the haematopoietic marker CD34 and for the neural and myogenic marker CD56. Interestingly, a variable number of cells were also positive for the pericyte marker 3G5 both in the mixed parent and clonal populations. The clonal populations exhibited a variable chondrogenic response. Conclusion. Pericytes are a candidate stem cell in many tissues and our results show that all six clonal populations derived from the heterogenous synovium population express the pericyte marker 3G5. The chondrogenic potential of synovial tissue could be optimised by the identification of clonal populations with a propensity to differentiate down particular differentiation pathways. Our study demonstrates a role for MSCs in of osteochondral defects (OCDs) and areas of focal
Introduction. Osteoarthritis commonly affects the first metatarsophalangeal joint. Stress across this joint has been postulated to increase the incidence of osteoarthritis. Certain foot structures have been associated with a higher incidence of osteoarthritis of the big toe. Utilizing finite elemental analysis, bone stress across the first metatarsophalangeal joint was calculated during mid stance phase of gait and compared in different foot structures. Method. A geometrically accurate three dimensional model of the first metatarsophalangeal joint was created utilising a high resolution 7 tesla MRI and Mimics v14 imaging software. Planus, rectus and cavus feet were simulated by varying the metatarsophalangeal declination angle to 10.1, 20.2 and 30.7 degrees, respectively. A non-manfold computer aided design technique in Mimics v14.2 and finite element method in ANSYS v12 FE were utilised to create the boundary conditions, representing the double support stance phase of gait. Using information from 61 asymptomatic patients with different foot types walking over a Novel emed-x plantar pressure measuring system, plantar loading conditions were applied. Finite elemental analysis was used to predict stress in the first metatarsophalangeal joint in the different foot types. Results. The peak stresses in the distal first metatarsophalangeal joint
Peroneal tendon subluxation although rare, is a commonly misdiagnosed cause of lateral ankle pain and instability. The orientation and depth of the lateral retromalleolar groove is a major contributor to peroneal stability, but is little understood. We attempt to quantify the groove using three directional mapping techniques. Eight age and sex matched embalmed cadaveric feet were dissected to expose the peroneal tendons and the retromalleolar groove. A hand held digitiser was used to map the version and inclination of the groove in a 3D virtual environment. The length and depth of the groove and its orientation were calculated using the