Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_16 | Pages 14 - 14
1 Oct 2017
Obi NJ Egan C Bing AJ Makwana NK
Full Access

Optimal treatment for symptomatic talus Osteochondral Lesions (OCLs) where primary surgical techniques have failed has not been established. Recent advances have focussed on biological repair such as Autologous Chondrocyte Implantation (ACI) however funding for this treatment is limited. Stem cell therapy in the ankle has not been assessed. The purpose of this pilot study was to evaluate the safety and efficacy of stem cell therapy in the treatment of ankle OCLs. The study was approved by the new procedures committee. Between January 2015 and December 2016, 26 patients, mean age of 36 years (range 16–58 years) with persisting disabling symptoms underwent Complete Cartilage Regeneration (CCR) using stem cells for failed primary treatment for ankle OCLs. Treatment involved iliac crest bone marrow aspiration, centrifugation to obtain bone marrow concentrate (BMC), and then injection of the BMC combined with hyaluronic acid into the OCL. Any necessary additional procedures, e.g. bone grafting or lateral ligament reconstruction were also undertaken. In 18 patients the lesion was on the medial talar dome, in 5 the lateral talar dome, 2 multiple, 1 tibial plafond. The Manchester-Oxford Foot Questionnaire (MOXFQ) was utilised to assess outcome. Average pre-operative MOXFQ scores were Walking dimension −78, Pain dimension − 65, and Social dimension − 64.2. Average 3 month post-operative MOXFQ scores were Walking − 54.8, Pain − 35.4, Social − 38.9. Average 6 month post-operative MOXFQ scores were Walking − 34.4, Pain − 35.4, Social − 28. Two patients from the beginning of the series had AOFAS scores only which improved from an average of 55 pre-operatively to 76 post-operatively. No early complications were noted. We conclude that CCR treatment is a safe treatment for talus OCLs in patients who have failed primary treatment. The procedure avoids two-stage surgery of ACI in some patients without large cysts. The early clinical outcome is favourable with no complications noted. Longer term follow-up is required


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 953 - 960
1 Sep 2023
Cance N Erard J Shatrov J Fournier G Gunst S Martin GL Lustig S Servien E

Aims. The aim of this study was to evaluate the association between chondral injury and interval from anterior cruciate ligament (ACL) tear to surgical reconstruction (ACLr). Methods. Between January 2012 and January 2022, 1,840 consecutive ACLrs were performed and included in a single-centre retrospective cohort. Exclusion criteria were partial tears, multiligament knee injuries, prior ipsilateral knee surgery, concomitant unicompartmental knee arthroplasty or high tibial osteotomy, ACL agenesis, and unknown date of tear. A total of 1,317 patients were included in the final analysis, with a median age of 29 years (interquartile range (IQR) 23 to 38). The median preoperative Tegner Activity Score (TAS) was 6 (IQR 6 to 7). Patients were categorized into four groups according to the delay to ACLr: < three months (427; 32%), three to six months (388; 29%), > six to 12 months (248; 19%), and > 12 months (254; 19%). Chondral injury was assessed during arthroscopy using the International Cartilage Regeneration and Joint Preservation Society classification, and its association with delay to ACLr was analyzed using multivariable analysis. Results. In the medial compartment, delaying ACLr for more than 12 months was associated with an increased rate (odds ratio (OR) 1.93 (95% confidence interval (CI) 1.27 to 2.95); p = 0.002) and severity (OR 1.23 (95% CI 1.08 to 1.40); p = 0.002) of chondral injuries, compared with < three months, with no association in patients aged > 50 years old. No association was found for shorter delays, but the overall dose-effect analysis was significant for the rate (p = 0.015) and severity (p = 0.026) of medial chondral injuries. Increased TAS was associated with a significantly reduced rate (OR 0.88 (95% CI 0.78 to 0.99); p = 0.036) and severity (OR 0.96 (95% CI 0.92 to 0.99); p = 0.017) of medial chondral injuries. In the lateral compartment, no association was found between delay and chondral injuries. Conclusion. Delay was associated with an increased rate and severity of medial chondral injuries in a dose-effect fashion, in particular for delays > 12 months. Younger patients seem to be at higher risk of chondral injury when delaying surgery. The timing of ACLr should be optimally reduced in this population. Cite this article: Bone Joint J 2023;105-B(9):953–960


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 18 - 18
2 Jan 2024
Ferreira S Tallia F Heyraud A Walker S Salzlechner C Jones J Rankin S
Full Access

For chondral damage in younger patients, surgical best practice is microfracture, which involves drilling into the bone to liberate the bone marrow. This leads to a mechanically inferior fibrocartilage formed over the defect as opposed to the desired hyaline cartilage that properly withstands joint loading. While some devices have been developed to aid microfracture and enable its use in larger defects, fibrocartilage is still produced and there is no clear clinical improvement over microfracture alone in the long term. Our goal is to develop 3D printed devices, which surgeons can implant with a minimally invasive technique. The scaffolds should match the functional properties of cartilage and expose endogenous marrow cells to suitable mechanobiological stimuli in-situ, in order to promote healing of articular cartilage lesions before they progress to osteoarthritis, and rapidly restore joint health and mobility. Importantly, scaffolds should direct a physiological host reaction, instead of a foreign body reaction, associated with chronic inflammation and fibrous capsule formation, negatively influencing the regenerative outcome.

Our novel silica/polytetrahydrofuran/polycaprolactone hybrids were prepared by sol-gel synthesis and scaffolds were 3D printed by direct ink writing. 3D printed hybrid scaffolds with pore channels of ~250 µm mimic the compressive behaviour of cartilage. Our results show that these scaffolds support human bone marrow stem/stromal cell (hMSC) differentiation towards chondrogenesis in vitro under hypoxic conditions to produce markers integral to articular cartilage-like matrix evaluated by immunostaining and gene expression analysis. Macroscopic and microscopic evaluation of subcutaneously implanted scaffolds in mice showed that scaffolds caused a minimal resolving inflammatory response. Our findings show that 3D printed hybrid scaffolds have the potential to support cartilage regeneration.

Acknowledgements: Authors acknowledge funding provided by EPSRC grant EP/N025059/1.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 54 - 54
4 Apr 2023
Kim Y Yang H Bae H Han H
Full Access

Stem cells are known to have low levels of intracellular reactive oxygen species (ROS) and high levels of glutathione. ROS are thought to interact with several pathways that affect the transcription machinery required for stem cell differentiation, and are critical for maintaining stem cell function. In this study, we are developing a new fluorescent probe that rapidly and reversibly reacts with glutathione (GSH), the most abundant non-protein thiol in living cells that acts as an antioxidant and redox regulator.

Multipotent perivascular progenitor cells derived from human ESCs (hESC-PVPCs): Differentiated ESCs as embryoid bodies in the presence of BMP4 to induce mesoderm differentiation followed by a simple cell selection strategy using attachment of single cells onto collagen-coated dishes. Differential gene expression profiling was performed among H9 hESCs, EBs induced by BMP4 and naturally selected CD140B+CD44+ population at Day 7 (PVPCs). Colony-forming assay: GSHhigh and GSHlow PVPCs were plated on 10-cm tissue culture-treated polystyrene dishes in triplicate in growth medium and cultured for 14 days. Transwell migration assay: GSHhigh and GSHlow PVPCs at passage 4 were resuspended at 1 × 106/mL in the migration medium and seeded in the upper chamber. The following human recombinant SDF-1 and PDGF-AA proteins were used as chemoattractants in the lower compartment.

Probe-GSH conjugate shows shifts in fluorescence excitation and emission spectra that enables ratiometric measurement of GSH levels. Using these properties, stem cells can be purified by FACS-based technology according to intracellular GSH level. We are developing a protocol both for comparing GSH level in stem cell from different culture conditions and for preparing stem cells with high-GSH level . Our results reveal that GSHhigh PVPC purified by FACS show increased colony forming ability compared with that GSHlow PVPC, indicating that intracellular GSH contributes to the maintenance of stemness. Moreover, transplantation of GSHlow PVPC is more effective than that of GSHlow PVPC for cartilage regeneration in osteochondral defect.

This technique enable FACS-based sorting of stem cells according to intracellular GSH levels and thus investigation of functional role of GSH (high antioxidant capacity) in the stem cell maintenance and chondrogenic differentiation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 142 - 142
4 Apr 2023
Ko J Lee E Cha H Im G
Full Access

In this study, we developed biocompatible adhesive which enables implanted chondrogenic-enhanced hASCs being strongly fixed to the lesion site of defected cartilage.

The bioengineered mussel adhesive protein (MAP) was produced and purified using a bacterial expression system as previously reported. The cell encapsulated coacervate was formulated with two polyelectrolyte, the MAP and 723kDa hyaluronic acid (HA). MAP formed liquid microdroplets with HA and subsequently gelated into microparticles, which is highly viscous and strongly adhesive.

The MAP with chondro-induced hASCs were implanted on the osteochondral defect created in the patellar groove/condyle of OA-induced rabbits. Rabbits were allocated to three different groups as follows: Group1 – Fibrin only; Group2 – Fibrin with hASCs (1.5×106 chondro-induced hASCs); Group3; MAP with hASCs.

The implanted cells were labeled with a fluorescent dye for in vivo visualization. After 35 days, fluorescent signals were more potently detected for MAP with hASCs group than Fibrin with hASCs group in osteochondral defect model. Moreover, histological assessment showed that MAP with hASCs group had the best healing and covered with hyaline cartilage-like tissue. The staining image shows that MAP with hASCs group were filled with perfectly differentiated chondrocytes. Although Fibrin with hASCs group had better healing than fibrin only group, it was filled with fibrous cartilage which owes its flexibility and toughness. As MAP with hASCs group has higher possibility of differentiating to complete cartilage, Fibrin only group and Fibrin with hASCs group have failed to treat OA by rehabilitating cartilage. In order to clarify the evidence of remaining human cell proving efficacy of newly developed bioadhesive, human nuclear staining was proceeded with sectioned rabbit cartilage tissue. The results explicitly showed MAP with hASCs group have retained more human cells than Fibrin only and Fibrin with hASCs groups.

We investigated the waterproof bioadhesive supporting transplanted cells to attach to defect lengthily in harsh environment, which prevents cells from leaked to other region of cartilage. Collectively, the newly developed bio-adhesive, MAP, could be successfully applied in OA treatment as a waterproof bioadhesive with the capability of the strong adhesion to target defect sites.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 126 - 126
1 Nov 2018
Kelly D
Full Access

Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of tissue engineering strategies for the regeneration of musculoskeletal tissues such as bone, ligament, tendon, meniscus and articular cartilage. This talk will review our attempts to use biomaterials and mesenchymal stem cells (MSCs) to bioprint functional articular cartilage and bone grafts for use in bone and joint regeneration. It will begin by describing how 3D bioprinting can be used to engineer biological implants mimicking the shape of specific bones, and how these bioprinted tissues mature into functional bone organs upon implantation into the body. Next, it will be demonstrated that different musculoskeletal injuries can be regenerated using 3D bioprinted implants, including large bone defects and osteochondral defects. The talk will conclude by describing how we can integrate biomaterials and MSCs into 3D bioprinting systems to engineer scaled-up tissues that could potentially be used regenerate entire diseased joints.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 125 - 125
1 Nov 2018
Detamore M
Full Access

One of the core tenets of our philosophy for tissue regeneration include the use of “raw materials,” where biomaterials themselves serve as both building blocks and bioactive signals. In recent years, a few groups around the world have gravitated toward cartilage matrix as a potentially chondroinductive material for cartilage regeneration. The major challenge to date in cartilage injury has been creating a biomaterial-only strategy that is capable of regenerating true hyaline-like cartilage without the addition of growth factors or exogenous cells. In the past few years, we have focused our efforts on establishing chondroinductivity in vitro, and in developing new materials synthesis strategies to provide ease of application for orthopedic surgeons in the operating room. By leveraging nanotechnology, we have developed a paste-like material constructed from cartilage matrix with encouraging mechanical performance post-crosslinking, and which avoids contraction after extended time. Looking to the future, we are working on next-generation approaches to chondroinductive materials. We have encouraging preliminary data which suggest the possibility of a chondroinductive response to a novel peptide sequence in vitro, which may be enhanced by simultaneous inclusion of adhesion peptides. Initial in vivo data in regeneration of rabbit femoral condyle cartilage defects may suggest promising regenerative capabilities with hydrogels based on these peptides. If indeed chondroinductive materials exist, and if they can be delivered easily, are safe, and can be provided at reasonable cost and with a reasonable regulatory strategy, chondroinductive materials may hold the potential to revolutionize cartilage regeneration.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 72 - 72
14 Nov 2024
Uvebrant K Andersen C Lim HC Vonk L Åkerlund EL
Full Access

Introduction

Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits.

Method

The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 71 - 71
1 Mar 2021
Pattappa G Krueckel J Johnstone B Docheva D Zellner J Angele P
Full Access

Osteoarthritis (OA) is a progressive and degenerative joint disease resulting in changes to articular cartilage. In focal early OA defects, autologous chondrocyte implantation (ACI) has a 2-fold failure rate due to poor graft integration and presence of inflammatory factors (e.g. Interleukin-1β). Bone marrow derived mesenchymal stem cells (MSCs) are an alternative cell source for cell-based treatments due to their chondrogenic capacity, though in vivo implantation leads to bone formation. In vivo, chondrocytes reside under an oxygen tension between 2–7% oxygen or physioxia. Physioxia enhances MSC chondrogenesis with reduced hypertrophic marker (collagen X and MMP13) expression compared to hyperoxic conditions (20% oxygen). This study sought to understand whether implantation of physioxic preconditioned MSCs improves cartilage regeneration in an early OA defect model compared to hyperoxic MSCs. Bone marrow extracted from New Zealand white rabbits (male: 5–6 months old; n = 6) was split equally for expansion under 2% (physioxia) or 20% (hyperoxia) oxygen. Chondrogenic pellets (2 × 105 cells/pellet) formed at passage 1 were cultured in the presence of TGF-β1 under their expansion conditions and measured for their wet weight and GAG content after 21 days. During bone marrow extraction, a dental drill (2.5mm diameter) was applied to medial femoral condyle on both the right and left knee and left untreated for 6 weeks. Following this period, physioxia and hyperoxia preconditioned MSCs were seeded into a hyaluronic acid (TETEC) hydrogel. Fibrous tissue was scraped and then MSC-hydrogel was injected into the right (hyperoxic MSCs) and left (physioxia MSCs) knee. Additional control rabbits with drilled defects had fibrous tissue scrapped and then left untreated without MSC-hydrogel treatment for the duration of the experiment. Rabbits were sacrificed at 6 (n = 3) and 12 (n = 3) weeks post-treatment, condyles harvested, decalcified in 10% EDTA and sectioned using a cryostat. Region of interest was identified; sections stained with Safranin-O/Fast green and evaluated for cartilage regeneration using the Sellers scoring system by three blinded observers. Physioxic culture of rabbit MSCs showed significantly shorter doubling time and greater cell numbers compared to hyperoxic culture (∗p < 0.05). Furthermore, physioxia enhanced MSC chondrogenesis via significant increases in pellet wet weight and GAG content (∗p < 0.05). Implantation of physioxic preconditioned MSCs showed significantly improved cartilage regeneration (Mean Sellers score = 7 ± 3; ∗p < 0.05) compared to hyperoxic MSCs (Sellers score = 12 ± 2) and empty defects (Sellers score = 17 ± 3). Physioxia enhances in vitro rabbit MSC chondrogenesis. Subsequent in vivo implantation of physioxia preconditioned MSCs improved cartilage regeneration in an early OA defect model compared to hyperoxic MSCs. Future studies will investigate the mechanisms for enhanced in vivo regeneration using physioxia preconditioned MSCs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 3 - 3
1 Mar 2021
To K Zhang B Romain K Mak CC Khan W
Full Access

Abstract

Objective

Articular cartilage damaged through trauma or disease has a limited ability to repair. Untreated, these focal lesions progress to generalized changes including osteoarthritis. Musculoskeletal disorders including osteoarthritis are the most significant contributor to disability globally. There is increasing interest in the use of mesenchymal stem cells (MSCs) for the treatment of focal chondral lesions. There is some evidence to suggest that the tissue type from which MSCs are harvested play a role in determining their ability to regenerate cartilage in vitro and in vivo. In humans, MSCs derived from synovial tissue may have superior chondrogenic potential.

Methods

We carried out a systematic literature review on the effectiveness of synovium-derived MSCs (sMSCs) in cartilage regeneration in in vivo studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Nineteen studies were included in our review; four examined the use of human sMSCs and the remainder were conducted using sMSCs harvested from animals.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 505 - 505
1 Oct 2010
Mayer S Büttner A Jansson V Mayer W Müller P Schieker M Schiergens T Sievers B
Full Access

Background: In regenerative medicine the autologous cartilage implantation (ACI) has been used for the repair of cartilage defects. As modification of ACI, the matrix assisted ACI is used nowadays with varying results. There is a general discussion about whether supporting scaffolds should be used or whether a scaffold-free cartilage repair is the method of choice. The major problem of scaffold-free regenerates is how to keep the cells in place after transplantation. Aim of this study was to examine a new scaffold-free diffusion-culture model, which uses a mega-congregate of chondrocytes cultured at an air-medium interface. This scaffold-free high-density diffusion culture could be used to repair cartilage defects.

Material and methods: Human chondrocytes from passage 1–7 were expanded in monolayer and transferred to pellet-culture or diffusion-culture. After one week cultures were stained with toluidine blue and safranin-O and evaluated by immunohistochemical staining for type II collagen. Quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) was performed for the mRNAs of cartilage markers.

Results: Positive alcian blue staining was detectable in diffusion-culture for human chondrocytes up to passage 7. Within passages the amount of proteoglycan production in relationship to the number of cells increased. There was a positive signal for Collagen type II in diffusion-cultures up to passage 7.

In qRT-PCR a redifferentiation of human chondrocytes was shown by the transfer into diffusion-culture. Within passage 1 to 3 human chondrocytes which were cultured in monolayer lost the ability to express Collagen Type II but could regain it if they were transferred to diffusion-culture. At diffusion-culture chondrocytes showed the highest expression of Collagen type II at passage 1 when compared to monolayer or to pellet-culture.

Conclusion: It could be shown that the cultivation in a scaffold-free diffusion-culture can lead to redifferentiation of human chondrocytes Chondrocytes in diffusion-cultures tend to form their own matrix and produce Collagen type II at higher amounts than in monolayer or in normal pellet-cultures. Therefore diffusion-culture congregates might be an appropriate tool to be used for a new scaffold-free cartilage regeneration approach.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 14 - 14
1 Dec 2021
Darlington I Vogt A Williams EC Brooks R Birch M Mohorianu I Khan W McCaskie A
Full Access

Abstract

Focal articular cartilage defects do not heal and, left untreated, progress to more widespread degenerative changes. A promising new approach for the repair of articular cartilage defects is the application of cell-based regenerative therapies using mesenchymal stromal cells (MSCs). MSCs are however present in a number of tissues and studies suggest that they vary in their proliferation, cell surface characterisation and differentiation. As the phenotypic properties of MSCs vary depending on tissue source, a systematic comparison of the transcriptomic signature would allow a better understanding of these differences between tissues, and allow the identification of markers specific to a MSC source that is best suited for clinical application. Tissue was used from patients undergoing total knee replacement surgery for osteoarthritis following ethical approval and informed consent. MSCs were isolated from bone, cartilage, synovium and infrapatellar fat pad. MSC number and expansion were quantified. Following expansion in culture, MSCs were characterised using flow cytometry with several cell surface markers; the cells from all sources were positive for CD44, CD90 and CD105. Their differentiation potential was assessed through tri-lineage differentiation assays. In addition, bulk mRNA-sequencing was used to determine the transcriptomic signatures. Differentially expressed (DE) genes were predicted. An enrichment analysis focused on the DE genes, against GO and pathway databases (KEGG and Reactome) was performed; protein-protein interaction networks were also inferred (Metascape, Reactome, Cytoscape). Optimal sourcing of MSCs will amplify their cartilage regeneration potential. This is imperative for assessing future therapeutic transplantation to maximise the chance of successful cartilage repair. A better understanding of differences in MSCs from various sources has implications beyond cartilage repair.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 84 - 84
1 Nov 2018
Muhonen V Haaparanta A Johansson L Laine K Trouvé C
Full Access

In 2009, a multidisciplinary team of orthopaedic surgeons, material scientists, and cell biologists created a consortium focused on developing novel biomaterials for cartilage regeneration. After years of hard work across scientific boundaries, the team discovered a solution that could benefit a large number of patients. However, the research team was faced with a question on how to proceed. Whether to continue the scientific path of unravelling the mysteries of cartilage regeneration or to focus on bringing the invention from bench to bedside? The latter would mean commercialisation of the invention, and for the scientists, taking a completely new career path. Taking this turn would mean risking the team members' scientific career, since running a start-up would inevitably mean lesser publications and other scientific merits in the forthcoming years. On the other hand, there was the potential to help a vast amount of patients. The team decided that the invention, a biodegradable weight-adaptive medical device for cartilage regeneration, was too promising to be left aside, so they made the choice to transform from academic researchers to entrepreneurs. Thus, Askel Healthcare Ltd was founded in March 2017. For a start-up operating in medical device sector, the company has a unique feature: the founding team is all-female. Not intentionally, but by a mere “side effect” of gathering the best talents to get the job done. The team continues to foster its strong scientific background, which is a true asset for a company focusing on tackling the big unmet medical need of cartilage regeneration.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 25 - 25
1 Apr 2018
Wu Z Skoufos I Tzora A Mullen AM Zeugolis D
Full Access

Introduction

Collagen is the predominant component of extracellular matrix in various connective tissues and makes up to 25% to 35% of the whole protein content in animal bodies. Type II collagen was first introduced from chicken sternal cartilage and presents supportive function in cartilaginous tissue. Since type II collagen is the major component of cartilage in joint, this study is aiming to determine an optimal type II collagen material for the development of medical devices for articular cartilage regeneration. In order to make more effective use of underutilized food waste, type II collagens from mammalian tissue sources (porcine tracheal cartilage; auricular cartilage; articular cartilage) and marine tissue sources (cuckoo ray, blonde ray, thorn back ray, lesser spotted dogfish) were isolated through acid-pepsin digestion under 4°C and characterized by various biological, biochemical and biophysical analysis. Pepsin cleaves the telopeptide region of the collagen molecule and pepsin treated collagen extraction ensures higher collagen yield. Telopeptide-free collagen reveals cytocompatibility, biodegradability and lower toxicity. The number and size of collagen chains were revealed by SDS-polyacrylamide gel electrophoresis. Intermolecular crosslinking density was quantified by Ninhydrin assay. Thermal stability was tested by differential scanning calorimetry (DSC) and enzymatic degradation was assessed by collagenase assay. Human chondrocytes were seeded on to collagen sponges at a density of 30,000 cells per sponge. Cell morphology (DAPI/ Rhodamine Phalloidin), viability(LIVE/DEAD®), proliferation(PicoGreen®) and metabolic activity (alamarBlue®) were analysed. Quantitative morphometric analysis was carried out using ImageJ software.

Conclusion

Porcine articular cartilage and cartilaginous fishes yield high purity type II collagen. Type II collagen isolated from cartilaginous fishes exhibited similar crosslinking density and thermal stability. Among various porcine cartilaginous tissues, articular cartilage was the most resistant to enzymatic degradation and female trachea exhibited the highest cross-linking density. The biological, biochemical and thermal properties of type II collagen are dependent on the tissue and gender from which the collagen was extracted.


Bone & Joint 360
Vol. 11, Issue 5 | Pages 48 - 48
1 Oct 2022


Bone & Joint 360
Vol. 11, Issue 4 | Pages 48 - 48
1 Aug 2022


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 121 - 121
1 Mar 2017
Zeng W Liu J Wang F Yang L
Full Access

Articular cartilage repair remains a challenge in orthopedic surgery, as none of the current clinical therapies can regenerate the functional hyaline cartilage tissue. In this study, we proposed a one-step surgery strategy that uses autologous bone marrow mesenchymal stem cells (MSCs) embedded in type II collagen (Col-II) gels to repair the full thickness chondral defects in minipig models. Briefly, 8 mm full thickness chondral defects were created in both knees separately, one knee received Col-II + MSCs transplantation, while the untreated knee served as control. At 1, 3 and 6 months postoperatively, the animals were sacrificed, regenerated tissue was evaluated by magnetic resonance imaging, macro- and microscopic observation, and histological analysis. Results showed that regenerated tissue in Col-II + MSCs transplantation group exhibited significantly better structure compared with that in control group, in terms of cell distribution, smoothness of surface, adjacent tissue integration, Col-II content, structure of calcified layer and subchondral bone. With the regeneration of hyaline-like cartilage tissue, this one step strategy has the potential to be translated into clinical application.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an extracellular matrix rich in glycosaminoglycan and type II collagen in the reparative tissue. Histological assessment yielded a mean overall International Cartilage Regeneration & Joint Preservation Society II score of 69.1 points (SD 10.4; 50 to 80). Conclusion. This study provides evidence supporting the safety of acellular UPAL gel implantation in facilitating cartilage repair. Despite being a single-arm study, it demonstrated the efficacy of UPAL gel implantation, suggesting it is an easy-to-use, one-step method of cartilage tissue repair circumventing the need to harvest donor cells. Cite this article: Bone Joint J 2023;105-B(8):880–887


Bone & Joint Research
Vol. 10, Issue 7 | Pages 370 - 379
30 Jun 2021
Binder H Hoffman L Zak L Tiefenboeck T Aldrian S Albrecht C

Aims. The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT). Methods. A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m. 2. (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types. Results. The mean defect size of the tibiofemoral joint compartment was 4.28 cm. 2. (SD 1.70). In total, 11 patients (12.6%) underwent transplantation with Chondro-Gide (matrix-associated autologous chondrocyte implantation (MACI)), 40 patients (46.0%) with Hyalograft C (HYAFF), 21 patients (24.1%) with Cartilage Regeneration System (CaReS), and 15 patients (17.2%) with NOVOCART 3D. The mean IKDC Subjective Knee Form score improved from 35.71 (SD 6.44) preoperatively to 75.26 (SD 18.36) after 24 months postoperatively in the Hyalograft group, from 35.94 (SD 10.29) to 71.57 (SD 16.31) in the Chondro-Gide (MACI) group, from 37.06 (SD 5.42) to 71.49 (SD 6.76) in the NOVOCART 3D group, and from 45.05 (SD 15.83) to 70.33 (SD 19.65) in the CaReS group. Similar improvements were observed in the VAS and Brittberg scores. Conclusion. Two years postoperatively, there were no significant differences in terms of outcomes. Our data demonstrated that MACT, regardless of the implants used, resulted in good clinical improvement two years after transplantation for localized tibiofemoral defects. Cite this article: Bone Joint Res 2021;10(7):370–379


Bone & Joint 360
Vol. 12, Issue 3 | Pages 44 - 44
1 Jun 2023