Advertisement for orthosearch.org.uk
Results 1 - 20 of 366
Results per page:
Bone & Joint Research
Vol. 10, Issue 3 | Pages 218 - 225
1 Mar 2021
Wiesli MG Kaiser J Gautier E Wick P Maniura-Weber K Rottmar M Wahl P

Aims

In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells.

Methods

Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 112 - 115
1 Jun 2013
Ismail HD Phedy P Kholinne E Kusnadi Y Sandhow L Merlina M

Objectives

Nonunion is one of the most troublesome complications to treat in orthopaedics. Former authors believed that atrophic nonunion occurred as a result of lack of mesenchymal stem cells (MSCs). We evaluated the number and viability of MSCs in site of atrophic nonunion compared with those in iliac crest.

Methods

We enrolled five patients with neglected atrophic nonunions of long bones confirmed by clinical examinations and plain radiographs into this study. As much as 10 ml bone marrow aspirate was obtained from both the nonunion site and the iliac crest and cultured for three weeks. Cell numbers were counted using a haemocytometer and vitality of the cells was determined by trypan blue staining. The cells were confirmed as MSCs by evaluating their expression marker (CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and viability were compared between the nonunion and iliac creat sites.


Bone & Joint Research
Vol. 1, Issue 3 | Pages 36 - 41
1 Mar 2012
Franklin SL Jayadev C Poulsen R Hulley P Price A

Objectives

Surgical marking during tendon surgery is often used for technical and teaching purposes. This study investigates the effect of a gentian violet ink marker pen, a common surgical marker, on the viability of the tissue and cells of tendon.

Methods

In vitro cell and tissue methods were used to test the viability of human hamstring explants and the migrating tenocytes in the presence of the gentian violet ink.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 68 - 68
17 Apr 2023
Lazaro-Pacheco D Holsgrove T
Full Access

Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours. The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of biomechanical testing protocols and IVD regenerative therapies


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 75 - 75
4 Apr 2023
Numpaisal P Khatsee S Arunsan P Ruksakulpiwat Y
Full Access

Silk fibroin (SF) has been used as a scaffold for cartilage tissue engineering. Different silkworms strain produced different protein. Also, molecular weight of SF depends on extraction method. We hypothesised that strain of silkworm and method of SF extraction would effect biological properties of SF scaffold. Therefore, cell viability and chondrogenic gene expression of human chondrogenic progenitor cells (HCPCs) treated with SF from 10 silkworm strains and two common SF extraction methods were investigate in this study. Twenty g of 10 strains silk cocoons were separately degummed in 0.02M Na2CO3 solution and dissolved in 100๐C for 30 minutes. Half of them were then dissolved in CaCl2/Ethanol/H2O [1:2:8 molar ratio] at 70±5๐C (method 1) and other half was dissolved in 46% w/v CaCl2 at 105±5๐C (method 2) for 4 hours. HCPCs were cultured in SF added cultured medial according to strain and extraction method. Cell viability at day 1, 3, and 7, were determined. Expression of collagen I, collagen II, and aggrecan at day 7 and 14, was studied. All experiment were done in triplicated samples. Generally, method 1 SF extraction showed higher cell viability in all strains. Cell viability from Nanglai Saraburi, Laung Saraburi and Nangtui strains were higher than those without SF in every time point while Wanasawan and J108 had higher viability at day 1 and decreased by time. Expression in collagen 1, collagen 2 and aggrecan in method 1 are higher at day 7 and day 14. Collagen 1 expression was highest in Nangnoi Srisaket, followed by Laung Saraburi and Nanglai Saraburi in day 7. Nangnoi Srisaket also had highest expression at day 14, followed by Nanglai Saraburi and Laung Saraburi respectively. Nangseaw had highest collagen 2 expression, follow by Laung Saraburi and Nangnoi Srisaket respectively. Higher aggrecan gene expression of Tubtimsiam, Wanasawan, UB 1 and Nangnoi Srisaket was observed at day 7 and increased expression of all strains at day 14. SF extraction using CaCl2/Ethanol/H2O offered better cell viability and chondrogenic expression. Nangseaw, Laung Saraburi and Nangnoi Srisaket strains expressed more chondrogenic phenotype


Aims. Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Methods. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm. 2. , 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Scx, TNC) expression were investigated using coculture system. Results. ESW-treated ACL remnant cells presented higher cell viability, proliferation, migration, and increased expression of COL-I A1, TGF-β, and VEGF. BMSC proliferation and migration rate significantly increased after coculture with ACL remnant cells with and without ESW stimulation compared to the BMSCs alone group. Furthermore, ESW significantly enhanced ACL remnant cells’ capability to upregulate the collagen gene expression and tenogenic differentiation of BMSCs, without affecting cell viability, TGF-β, and VEGF expression. Conclusion. ACL remnant cells modulated activity and differentiation of surrounding cells. The results indicated that ESW enhanced ACL remnant cells viability, proliferation, migration, and expression of collagen, TGF-β, VEGF, and paracrine regulation of BMSC proliferation, migration, collagen expression, and tenogenesis. Cite this article: Bone Joint Res 2020;9(8):457–467


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 80 - 80
4 Apr 2023
Prabhakaran V Hawkswell R Paxton J
Full Access

3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way ANOVA and post-hoc Tukey test was performed to compare cell viability among different media and seeding densities. Histological spheroid sections were stained with hematoxylin and eosin (H&E) to identify any visible necrotic core. Cell number increased from day 1 to 28 in all three seeding densities with a notable decrease in cell viability. 1×10. 4. cells proliferated faster than 5×10. 4. and 1×10. 5. cells and had proportionately similar cell death. The necrotic core area was relatively equivalent between all cell seeding densities. The larger the spheroid size, the larger is the size of the necrotic core. This study has demonstrated that 3D spheroids can be formed from dRobs at a variety of seeding densities with no marked difference in necrotic core formation. Future studies will focus on utilising the bone cell spheroids for engineering scalable scaffold-free bone tissue constructs


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known. Materials and Methods. Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed. Results. Incubation of the tendons or tenocytes with 5 mg vancomycin for 20 minutes (clinical use) had no negative effects on the cell viability in the tendons or the isolated tenocytes, while incubation with the toxic control (ethanol) significantly reduced cell viability. Even twice the concentration and a longer incubation time had no negative effect on the cells in the tendons or the isolated cells. Vancyomycin did not affect the expression of Col1a1, Col3a1, and the tenocyte markers mohawk, scleraxis and tenomodulin. Conclusions. The results showed that clinical practice of wrapping the autograft in vancomycin did not impair the tenocyte viability. The expression of collagens and tenocyte markers was also not affected, neither in the incubated tendons nor in the isolated cells. This indicates that vancomycin had no effect on cell phenotype and the formation of the extracellular matrix, which, in addition to cell viability, is important for the performance of the autograft


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims. cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. Methods. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Results. CREB1 was hyperactive in osteoarthritic articular cartilage, interleukin (IL)-1β-treated cartilage explants, and IL-1β- or carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-treated chondrocytes. 666-15 enhanced cell viability of OA-like chondrocytes and alleviated IL-1β- or CCCP-induced chondrocyte injury through inhibition of mitochondrial dysfunction-associated apoptosis. Moreover, inhibition of CREB1 by 666-15 suppressed expression of ADAMTS4. Additionally, 666-15 alleviated joint degeneration in an ACLT mouse model. Conclusion. Hyperactive CREB1 played a critical role in OA development, and 666-15 exerted anti-IL-1β or anti-CCCP effects in vitro as well as joint-protective effects in vivo. 666-15 may therefore be used as a promising anti-OA drug. Cite this article: Bone Joint Res 2024;13(1):4–18


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 130 - 130
2 Jan 2024
Ergene E Liman G Demirel G Yilgor P
Full Access

Skeletal muscle tissue engineering has made progress towards production of functional tissues in line with the development in materials science and fabrication techniques. In particular, combining the specificity of 3D printing with smart materials has introduced a new concept called the 4D printing. Inspired by the unique properties of smart/responsive materials, we designed a bioink made of gelatin, a polymer with well-known cell compatibility, to be 3D printed on a magnetically responsive substrate. Gelatin was made photocrosslinkable by the methacrylate reaction (GELMA), and its viscosity was finetuned by blending with alginate which was later removed by alginate lyase treatment, so that the printability of the bioink as well as the cell viability can be finetuned. C2C12 mouse myoblasts-laden bioink was then 3D printed on a magnetic substrate for 4D shape-shifting. The magnetic substrate was produced using silicon rubber (EcoFlex) and carbonyl iron powders. After 3D printing, the bioink was crosslinked on the substrate, and the substrate was rolled with the help of a permanent magnet. Unrolled (Open) samples were used as the control group. The stiffness of the bioink matrix was found to be in the range of 13–45 kPa, which is the appropriate value for the adhesion of C2C12 cells. In the cell viability analysis, it was observed that the cells survived and could proliferate within the 7-day duration of the experiment. As a result of the immunofluorescence test, compared to the Open Group, more cell nuclei were observed overlapping MyoD1 expression in the Rolled Group; this indicated that the cells in these samples had more cell-cell interactions and therefore tended to form more myotubes. Acknowledgements: This research was supported by the TÜBİTAK 2211-A and YÖK 100/2000 scholarship programs


Bone & Joint Research
Vol. 11, Issue 12 | Pages 854 - 861
1 Dec 2022
Park TJ Park SY Cho W Oh H Lee HJ Abd El-Aty AM Bayram C Jeong JH Jung TW

Aims. Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. Methods. Human primary tenocytes were cultured in palmitate (400 μM) and palmitate plus DEL-1 (0 to 2 μg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay. Results. We found that treatment with DEL-1 suppressed palmitate-induced inflammation, ER stress, and apoptosis in human primary tenocytes. DEL-1 treatment augmented LC3 conversion and p62 degradation as well as AMPK phosphorylation. Moreover, small interfering RNA for AMPK or 3-methyladenine (3-MA), an autophagy inhibitor, abolished the suppressive effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes. Similar to DEL-1, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, also attenuated palmitate-induced inflammation, ER stress, and apoptosis in tenocytes, which 3-MA reversed. Conclusion. These results revealed that DEL-1 suppresses inflammation and ER stress, thereby attenuating tenocyte apoptosis through AMPK/autophagy-mediated signalling. Thus, regular exercise or administration of DEL-1 may directly contribute to improving tendinitis exacerbated by obesity and insulin resistance. Cite this article: Bone Joint Res 2022;11(12):854–861


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 19 - 19
17 Apr 2023
Niessen L Wendlandt R Schulz A
Full Access

A promising application of Mesenchymal stem cells (MSCs) is the treatment of non-unions. Substituting bone grafts, MSCs are directly injected into the fracture gap. High cell viability seems to be a prerequisite for therapeutic success. Administration of the MSCs via injection creates shear stresses possibly damaging or destroying the cells. Aim of this study was to investigate the effect of the injection process on cell viability. MSCs were isolated and cultivated from femoral tissue of five subjects undergoing arthroplasty. Prior to injection, the cells were identified as MSCs. After dissolving to a concentration of 1 Million cells/ml, 1 ml of the suspension was injected through a cannula of 200 mm length and 2 mm diameter (14 G) with flow rates of 38 and 100 ml/min. The viability of the MSCs at different flow rates was evaluated by staining to detect the healthy cell fraction. It was analyzed statistically against a control group via the Kruskal-Wallis-test and for equivalence via the TOST procedure. Significance level was set to 5 %, equivalence margin to 20 %. The healthy cell fraction of the control group was 85.88 ± 2.98 %, 86.04 ± 2.53 % at 38 ml/min and 85.48 ± 1.64 % at 100 ml/min. There was no significant difference between the fraction of healthy cells (p = 0.99) for different volume flows, but a significant equivalence between the control group and the two volume flows (38 ml/min: p = 0.002, 100 ml/min: p = 0.001). When injecting MSC solutions, e.g. into a non-union, the viability of the injected cells does not deterioriate significant. The injecting technique is therefore feasible


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 54 - 54
11 Apr 2023
Šećerović A Ristaniemi A Cui S Li Z Alini M Weder G Heub S Ledroit D Grad S
Full Access

A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending. An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test). The new model retained a high level of cell viability after three weeks of in vitro culture (outer annulus fibrosus 82%, inner annulus fibrosus 69%, nucleus pulposus 75%) and maintained the typical values of IVD height reduction after loading (≤ 10%). The holder-IVD interface reached the following highest average values in the tested configurations: 320.37 N in compression, 431.86 N in tension, 1.64 Nm in torsion, and 0.79 Nm in bending. The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 83 - 83
14 Nov 2024
Llucia A Espinosa SC
Full Access

Introduction. Tendon ruptures represent one of the most common acute tendon injuries in adults worldwide, affecting millions of people anually and becoming more prevalent due to longer life expectancies and sports activities. Current clinical treatments for full tears are unable to completely restore the torn tendons to their native composition, structure and mechanical properties. To address this clinical challenge, tissue-engineered substitutes will be developed to serve as functional replacements for total tendon ruptures that closely resemble the original tissue, restoring functionality. Method. Water borne polyurethanes (WBPU) containing acrylate groups, specifically polyethylene glycol methacrylate (PEGMA) or 2-hydroxyethyl methacrylate (HEMA), were combined with mouse mesenchymal stem cells (MoMSCs) and heparin sodium to formulate bioinks for the fabrication of scaffolds via extrusion-based 3D bioprinting. Result. The biocompatibility of acrylated-WBPUs was confirmed in 2D with MoMSCs using lactate dehydrogenase assay, DNA assay and live/dead assays. Cell-laden scaffolds were 3D-bioprinted by encapsulating MoMSCs at varying cell densities within the acrylated WBPUs. The resulting 3D structures support cell viability and proliferation within the scaffolds, as confirmed by live/dead assay, lactate dehydrogenase assay and DNA assays. Differentiation studies in the 3D-bioprinted scaffolds demonstrated the phenotype transition of MoMSCs toward tenocytes through gene expression and protein deposition analysis. The inclusion of sodium heparin in the bioinks revealed increased synthesis of matrix assembly proteins within the 3D-bioprinted constructs. Conclusion. The developed bioinks were biocompatible and printable, supporting cell viability within the 3D-bioprinted scaffold. The fabricated cell-laden constructs sustained cell proliferation, differentiation, and tissue formation. The addition of heparin sodium enhanced tissue formation and organization, showing promising results for the regeneration of tendon total ruptures. Principio del formularioThis work was supported by the Spanish State Research Agency (AEI) under grant No CPP2021-008754. The authors would like to thank their partners in the project, which are in charge of the synthesis of heparin sodium and acrylated-WBPUs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 137 - 137
2 Jan 2024
Tavernaraki N Platania V Chatzinikolaidou M
Full Access

Bone is a dynamic tissue that undergoes continuous mechanical forces. Mechanical stimuli applied on scaffolds resembling a part of the human bone tissue affects the osteogenesis [1]. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a piezoelectric material that responds to mechanical stimulation producing an electrical signal, which in turn promotes the osteogenic differentiation of bone-forming cells by opening voltage-gated calcium channels [2]. In this study we examined the biological behavior of pre-osteoblastic cells seeded onto lyophilized piezoelectric PEDOT-containing scaffolds applying uniaxial compression. Two different concentrations of PEDOT (0.10 and 0.15% w/v) were combined with a 5% w/v poly(vinyl alcohol) (PVA) and 5% w/v gelatin, casted into wells, freeze dried and crosslinked with 2% v/v (3-glycidyloxypropyl)trimethoxysilane and 0.025% w/v glutaraldehyde. The scaffolds were physicochemically characterized by FTIR, measurement of the elastic modulus, swelling ratio and degradation rate. The cell-loaded scaffolds were subjected to uniaxial compression with a frequency of 1 Hz and a strain of 10% for 1 h every second day for 21 days. The loading parameters were selected to resemble the in vivo loading situation [3]. Cell viability and morphology on the PEDOT/PVA/gelatin scaffolds was determined. The alkaline phosphatase (ALP) activity, the collagen and calcium production were determined. The elastic modulus of PEDOT/PVA/gelatin scaffolds ranged between 1 and 5 MPa. The degradation rate indicates a mass loss of 15% after 21 days. The cell viability assessment displays excellent biocompatibility, while SEM images display well-spread cells. The ALP activity at days 3, 7 and 18 as well as the calcium production are higher in the dynamic culture compared to the static one. Moreover, energy dispersive spectroscopy analysis revealed the presence of calcium phosphate in the extracellular matrix after 14 days. The results demonstrate that PEDOT/PVA/gelatin scaffolds promote the adhesion, proliferation, and osteogenic differentiation of pre-osteoblastic cells under mechanical stimulation, thus favoring bone regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 95 - 95
14 Nov 2024
Machain TC Kharchenko A Hostettler R Lippl J Mouthuy PA
Full Access

Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute adduction/abduction stimulation to chambers daily over a week. A metabolic activity assay served to assess cell viability at four time points. Statistical significance = p<0.05. Result. One day after beginning mechanical stimulation, chambers in the medium and high-force regimes displayed a rise in metabolic activity by 3% and 5%, respectively. By the last experimental day, all mechanical stimulation regimes had induced an augment in cell viability (15%, 57% and 39% with low, medium, and high loads, respectively) matched against the static controls. Compared to all other conditions, the medium-force regime prompted an increased relative change in metabolic activity for every time point set against day one (p<0.05). Conclusion. Human tenocytes’ viability reflected by metabolic activity in a physiologically relevant bioreactor system is enhanced by loading forces around 25N when mechanically stimulating using adduction/abduction motions. Knowing the most favourable load regime to stimulate tenocyte growth has informed the ongoing exploration of the distinctive effect of different motions on tendon regeneration towards engineering tissue grafts. This work was supported by the Engineering and Physical Sciences Research Council EP/S003509/1


Aims. Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Methods. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay. Results. The expression of miR-760 was upregulated in OP tissues, whereas ANKFY1 expression was downregulated. APS stimulated the differentiation and proliferation of hBMSCs by: increasing their viability; upregulating the expression levels of cyclin D1, ALP, OCN, and RUNX2; and inducing osteoblast mineralization. Moreover, APS downregulated the expression of miR-760. Overexpression of miR-760 was found to inhibit the promotive effect of APS on hBMSC differentiation and proliferation, while knockdown of miR-760 had the opposite effect. ANKFY1 was found to be the direct target of miR-760. Additionally, ANKFY1 participated in the APS-mediated regulation of miR-760 function in hBMSCs. Conclusion. APS promotes the osteogenic differentiation and proliferation of hBMSCs. Moreover, APS alleviates the effects of OP by downregulating miR-760 and upregulating ANKFY1 expression. Cite this article: Bone Joint Res 2023;12(8):476–485


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 3 - 3
22 Nov 2024
Samuel BJ Horbert V Jin Z Brauer DS Matziolis G
Full Access

Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the bioactive glass and the choice of particle size have a major influence on subsequent applications. In addition to the different compositions of the BG, particle size and additional medium change also influence the pH and ion release, and therefore also on cells or bacteria viability. The sizes of the bioactive glass particle are inversely proportional to it. Further tests are necessary to develop custom design BG compositions, which simultaneously stimulate osteoblasts proliferation and prevent microbial adhesion


Bone & Joint Research
Vol. 13, Issue 4 | Pages 157 - 168
4 Apr 2024
Lin M Chen G Yu H Hsu P Lee C Cheng C Wu S Pan B Su B

Aims. Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods. MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results. Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion. Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion. Cite this article: Bone Joint Res 2024;13(4):157–168