Advertisement for orthosearch.org.uk
Results 1 - 20 of 74
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 5 - 5
1 Dec 2021
Agarwal N Mak CC Bojanic C To K Khan W
Full Access

Abstract. Osteoarthritis (OA) is a degenerative disorder associated with cartilage loss and is a leading cause of disability around the world. In old age, the capacity of cartilage to regenerate is diminished. With an aging population, the burden of OA is set to rise. Currently, there is no definitive treatment for OA. However, cell-based therapies derived from adipose tissue are promising. A PRISMA systematic review was conducted employing four databases (MEDLINE, EMBASE, Cochrane, Web of Science) to identify all clinical studies that utilized adipose tissue derived mesenchymal stem cells (AMSCs) or stromal vascular fraction (SVF) for the treatment of knee OA. Eighteen studies were included, which met the inclusion criteria. Meta-analyses were conducted on fourteen of these studies, which all documented WOMAC scores after the administration of AMSCs. Pooled analysis revealed that cell-based treatments definitively improve WOMAC scores, post treatment. These improvements increased with time. The studies in this meta-analysis have established the safety and efficacy of both AMSC therapy and SVF therapy for knee OA in old adults and show that they reduce pain and improve knee function in symptomatic knee OA suggesting that they may be effective therapies to improve mobility in an aging population


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 103 - 103
1 Nov 2018
Jorgensen C
Full Access

Adipose derived mesenchymal stromal cells (ASC) are adult stem cells exhibiting functional properties that have open the way for cell-based clinical therapies. Primarily, their capacity of multilineage differentiation has been explored in a number of strategies for skeletal tissue regeneration. More recently, MSCs have been reported to exhibit immunosuppressive as well as healing capacities, to improve angiogenesis and prevent apoptosis or fibrosis through the secretion of paracrine mediators. Among the degenerative diseases associated with aging, osteoarthritis is the most common pathology and affects 16% of the female population over 65 years. Up to now, no therapeutic option exists to obtain a sustainable improvement of joint function beside knee arthroplasty. This prompted us to propose adipose derived stem cells as a possible cell therapy. We performed pre-clinical models of osteoarthritis and showed that a local injection of ASC showed a reduction of synovitis, reduction of osteophytes, joint stabilization, reducing the score of cartilage lesions. This work was completed by toxicology data showing the excellent tolerance of the local injection of ADSC and biodistribution showing the persistence of cells after 6 months in murine models. The aim of the ADIPOA trial is to demonstrate the efficacy of adipose derived stem cells therapy in knee osteoarthritis (OA) in a phase 2/3 controlled multicenter study controlled against standard of care. Safety and feasibility as well as dose response was previously assessed in the ADIPOA FP7 project. The bi-centric phase I clinical trial in Montpellier (France) and Würzburg (Germany) included 18 patients with moderate to severe knee OA, each patient received a single injection of autologous ADSC, in a open scale up dose trial, starting form 2 10 6 cells to 50 106 cells. The 107 dose appears to be well tolerated and showed preliminary response in terms of decreasing local inflammation. This first study confirmed the feasibility and safety of local injection of ADSC in knee OA and suggested the most effective dose (107 autologous ADSC). This work constituted a significant step forward treating this disease with ADSC to demonstrate safety of the procedure. we conduct a prospective multicenter randomized Phase 2/3 study with 86 patients with moderate to severe knee OA to demonstrate superiority of stem cell-based therapy compared to standard of care (SOC) in terms in reduction in clinical symptoms (WOMAC score) and structural benefit (assessed by T1rhoMRI that allow quantification of cartilage proteoglycan content). This project will offer EU a unique leadership in OA with strong positions in EU and US due to patents and quality of the methodology to demonstrate efficiency of ADSC. ADIPOA brings together a unique combination of expertises and leaders in clinical rheumatology, MRI specialists, Stem cell Institutes, national GMP grade adipose derived stem cell production platform (ECELLFRANCE) and SME specialized in cell therapy trials in the EU. The production of the cells will be granted to EFS through ECELLFRANCE national platform, which have the GMP facility and will work as a contracting manufacturing organization. The expertise, leadership and critical mass achieved by this Consortium should enable breakthroughs in ASC engineering directly amenable for clinical applications in OA


To analyse the efficacy and safety of cellular therapy utilizing Mesenchymal Stromal Cells (MSCs) in the management of rotator cuff(RC) tears from clinical studies available in the literature.

We conducted independent and duplicate electronic database searches including PubMed, Embase, Web of Science, and Cochrane Library on August 2021 for studies analyzing the efficacy and safety of cellular therapy (CT) utilizing MSCs in the management of RC tears. VAS for pain, ASES Score, DASH Score, Constant Score, radiological assessment of healing and complications and adverse events were the outcomes analyzed. Analysis was performed in R-platform using OpenMeta [Analyst] software.

RESULTS:

6 studies involving 238 patients were included for analysis. We noted a significant reduction in VAS score for pain at 3 months (WMD=-2.234,p<0.001) and 6 months (WMD=-3.078,p<0.001) with the use of CT. Concerning functional outcomes, utilization of CT produced a significant short-term improvement in the ASES score (WMD=17.090,p<0.001) and significant benefit in functional scores such as Constant score (WMD=0.833,p=0.760) at long-term. Moreover, we also observed a significantly improved radiological tendon healing during the long-term follow-up (OR=3.252,p=0.059). We also noted a significant reduction in the retear rate upon utilization of CT in RC tears both at short- (OR=0.079,p=0.032) and long-term (OR=0.434,p=0.027). We did not observe any significant increase in the adverse events as compared with the control group (OR=0.876,p=0.869).

Utilization of CT in RC tear is safe and it significantly reduced pain severity, improved functional outcome, enhanced radiological tendon healing, and mitigated retear rates at short- and long-term follow-up.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 217 - 217
1 May 2009
Li R Schemitsch E Stewart D von Schroeder H
Full Access

The purpose of this study was to develop a cell-based VEGF gene therapy in order to accelerate fracture healing and investigate the effect of VEGF on bone repair in vivo.

Twenty-one rabbits were studied. A ten millimeter segmental bone defect was created after twelve millimeter periosteal excision in the middle one third of each tibia and each tibia was plated. Primary cultured rabbit fibroblasts were transfected by use of SuperFect (Qiagen Inc) with pcDNA-VEGF. 5.0 X 106 cells in 1ml PBS were delivered via impregnated gelfoam into the fracture site. Experimental groups were:

Transfected fibroblasts with VEGF (n=7),

Fibroblasts alone (n=7), and

PBS only (n=7). The animals were sacrificed and fracture healing specimens collected at ten weeks post surgery

Radiology: Fracture healing was defined as those with bone bridging of the fracture defect. After ten weeks, fourteen tibial fractures were healed in total including six in group one, four in group two and four in group three. The VEGF group had an earlier initial sufficient volume of bridging new bone formation. Histological evaluation demonstrated ossification across the entire defect in response to the VEGF gene therapy, whereas the defects were predominantly fibrotic and sparsely ossified in groups two and three. Numerous positively stained (CD31) vessels were shown in the VEGF group. MicroCT evaluation showed complete bridging for the VEGF group, but incomplete healing for groups two and three. Micro-CT evaluation of the new bone structural parameters showed that the amount of new bone (volume of bone (VolB) x bone mineral density (BMD)), bone volume fractions (BVF), bone volume/tissues (BV/TV), trabecular thickness (Tb.Th), number (Tb.N) and connectivity density (Euler number) were higher; while structure model index (SMI), bone surface/bone volume (BS/BV), and trabecular separations (Tb.Sp) were lower in the VEGF group than the other groups. P-Values < 0.05 indicated statistical significance (ANOVA, SPSS) in all parameters except for SMI (0.089) and VolBx-BMD (0.197).

These results indicate that cell-based VEGF gene delivery has significant osteogenic and angiogenic effects and demonstrates the ability of cell based VEGF gene therapy to enhance healing of a critical sized defect in a long bone in rabbits.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc.

Cite this article: Bone Joint Res 2013;2:169–78.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 27 - 27
2 Jan 2024
Dei A Hills M Chang W Wagey R Eaves A Louis S Zeugolis D Sampaio A
Full Access

Cell-based therapies offer a promising strategy to treat tendon injuries and diseases. Both mesenchymal stromal cells (MSCs) and pluripotent stem cells (PSCs) are good candidates for such applications due to their self-renewing and differentiation capacity. However, the translation of cell-based therapies from bench to bedside can be hindered by the use of animal-derived components in ancillary materials and by the lack of standardised media and protocols for in vitro tenogenic differentiation. To address this, we have optimized animal component-free (ACF) workflows for differentiating human MSCs and PSCs to tenocyte-like cells (TLCs) respectively. MSCs isolated from bone marrow (n = 3) or adipose tissue (n = 3) were expanded using MesenCult™-ACF Plus Culture Kit for at least 2 passages, and differentiated to TLCs in 21 days using a step-wise approach. Briefly, confluent cultures were treated with an ACF tenogenic induction medium for 3 days, followed by treatment with an ACF maturation medium for 18 days. Monolayer cultures were maintained at high density without passaging for the entire duration of the protocol, and the medium was changed every 2 – 3 days. In a similar fashion, embryonic (n = 3) or induced PSCs (n = 3) were first differentiated to acquire a mesenchymal progenitor cell (MPC) phenotype in 21 days using STEMdiff™ Mesenchymal Progenitor Kit, followed by the aforementioned tenogenic protocol for an additional 21 days. In all cases, the optimized workflows using ACF formulations consistently activated a tenogenic transcriptional program, leading to the generation of elongated, spindle-shaped tenomodulin-positive (TNMD+) cells and deposition of an extracellular matrix predominantly composed of collagen type I. In summary, here we describe novel workflows that can robustly generate TLCs from MSCs and hPSC-derived MPCs for potential translational applications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 81 - 81
17 Apr 2023
Rambacher K Gennrich J Schewior R Lang S Pattappa G Zihlmann C Stiefel N Zellner J Docheva D Angele P
Full Access

Meniscus tears have been treated using partial meniscectomy to relieve pain in patients, although this leads to the onset of early osteoarthritis (OA). Cell-based therapies can help preserve the meniscus, although the presence of inflammatory cytokines compromises clinical outcomes. Anti-inflammatory drugs (e.g. celecoxib), can help to reduce pain in patients and in vitro studies suggest a beneficial effect on cytokine inhibited matrix content. Previously, we have demonstrated that the inhibitory effects of IL-1β can be countered by culture under low oxygen tension or physioxia. The present study sought to understand whether physioxia, celecoxib or combined application can counter the inhibitory effects IL-1β inhibited meniscus cells. Human avascular and vascular meniscus cells (n =3) were isolated and expanded under 20% (hyperoxia) or 2% (physioxia) oxygen. Cells were seeded into collagen scaffolds (Geistlich, Wolhusen) and cultured for 28 days either in the presence of 0.1ng/mL IL-1β, 5µg/mL celecoxib or both under their expansion oxygen conditions. Histological (DMMB, collagen I and collagen II immunostaining), GAG content and gene expression analysis was evaluated for the scaffolds. Under hyperoxia, meniscus cells showed a significant reduction in GAG content in the presence of IL-1β (*p < 0.05). Celecoxib alone did not significantly increase GAG content in IL-1β treated cultures. In contrast, physioxic culture showed a donor dependent increase in GAG content in control, IL-1β and celecoxib treated cultures with corresponding histological staining correlating with these results. Additionally, gene expression showed an upregulation in COL1A1, COL2A1 and ACAN and a downregulation in MMP13 and ADAMTS5 under physioxia for all experimental groups. Physioxia alone had a stronger effect in countering the inhibitory effects of IL-1β treated meniscus cells than celecoxib under hyperoxia. Preconditioning meniscus cells under physioxia prior to implantation has the potential to improve clinical outcomes for cell-based therapies of the meniscus


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 115 - 115
4 Apr 2023
Wu H Ding Y Sun Y Liu Z Li C
Full Access

Intervertebral disc degeneration can lead to physical disability and significant pain, while the present therapeutics still fail to biochemically and biomechanically restore the tissue. Stem cell-based therapy in treating intervertebral disc (IVD) degeneration is promising while transplanting cells alone might not be adequate for effective regeneration. Recently, gene modification and 3D-printing strategies represent promising strategies to enhanced therapeutic efficacy of MSC therapy. In this regard, we hypothesized that the combination of thermosensitive chitosan hydrogel and adipose derived stem cells (ADSCs) engineered with modRNA encoding Interleukin − 4 (IL-4) can inhibit inflammation and promote the regeneration of the degenerative IVD. Rat ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IL-4 modRNA engineered ADSCs (named as IL-4-ADSCs) on nucleus pulposus cells. ModRNA transfected mouse ADSCs with high efficiency and the IL-4 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IL-4 protein. In vitro, IL-4-ADSCs induced increased anabolic markers expression of nucleus pulposus cells in inflammation environment compared to untreated ADSCs. These findings collectively supported the therapeutic potential of the combination of thermosensitive chitosan hydrogel and IL-4-ADSCs for intervertebral disc degeneration management. Histological and in vivo validation are now being conducted


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 125 - 125
2 Jan 2024
Scala P Giudice V Selleri C Maffulli N Rehak L Porta G
Full Access

Spontaneous muscle regenerative potential is limited, as severe injuries incompletely recover and result in chronic inflammation. Current therapies are restricted to conservative management, not providing a complete restitutio ad integrum; therefore, alternative therapeutic strategies are welcome, such as cell-based therapies with stem cells or Peripheral Blood Mononuclear Cells (PBMCs). Here, we described two different in vitro myogenic models: a 2D perfused system and a 3D bioengineered scaffold within a perfusion bioreactor. Both models were assembled with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human primary skeletal myoblasts (hSkMs) to study induction and maintenance of myogenic phenotype in presence of PBMCs. When hBM-MSCs were cultured with human primary skeletal myoblasts (hSkMs) in medium supplemented with 10 ng/mL of bFGF; cells showed increased expression of myogenic-related gene, such as Desmin and Myosin Heavy Chain II (MYH2) after 21 days, and a prevalent expression of anti-inflammatory cytokines (IL10, 15-fold). Next, PBMCs were added in an upper transwell chamber and hBM-MSCs significantly upregulated myogenic genes throughout the culture period, while pro-inflammatory cytokines (e.g., IL12A) were downregulated. In 3D, hBM-MSCs plus hSkMs embedded in fibrin-based scaffolds, cultured in dynamic conditions, showed that all myogenic-related genes tended to be upregulated in the presence of PBMCs, and Desmin and MYH2 were also detected at protein level, while pro-inflammatory cytokine genes were significantly downregulated in the presence of PBMCs. In conclusion, our works suggest that hBM-MSCs have a versatile myogenic potential, enhanced and modulated by PMBCs. Moreover, our 3D biomimetic approach seemed to better resemble the tissue architecture allowing an efficient in vitro cellular cross-talk


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 77 - 77
17 Apr 2023
Vogt A Darlington I Birch M Brookes R McCaskie A Khan W
Full Access

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Clear differences between the younger and older patients were indicated. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 47 - 47
2 Jan 2024
Cerveró-Varona A Canciello A Prencipe G Peserico A Haidar-Montes A Santos H Russo V Barboni B
Full Access

The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies. Acknowledgement: This research is part of the P4FIT project ESR1, funded under the H2020-ITN-EJD-Marie-Skłodowska-Curie grant agreement 955685


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 95 - 95
1 Nov 2018
Cox S
Full Access

By combining cells, biological factors, and biomaterials the field of tissue engineering has generated technologies capable of supporting regeneration. However, the regulatory hurdles associated with the use of cell-based therapies often hinder translation. Consequently, to meet the growing demand for regenerative technologies new approaches are needed. Emerging evidence suggests that cell-derived extracellular vesicles (EVs) are critical in cell-cell communication and regulation of bone formation. This talk will explore the role of osteoblast EVs in directing stem-cell differentiation in-vitro. EVs were isolated from cell culture media by ultracentrifugation and profiled for size and composition using a range of techniques. Notably, proteomic analysis revealed the presence of calcium channelling annexins and bridging collagens that may be key to their role in mineralisation. To minimise the concentration of EVs required to induce a pro-osteogenic effect we propose that they may be locally delivered. Opportunities to incorporate these pro-osteogenic EVs into injectable biomaterials will be discussed, in particular the formulation of microcapsules and fluid-gels. In summary, incorporation of EVs in tissue-engineered scaffolds has the potential to deliver all the advantages of a cell-based therapy but without using viable cells. The advantages of this approach may represent a new phase of tissue engineering


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 70 - 70
4 Apr 2023
Maestro-Paramio L García-Rey E Bensiamar F Rodríguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Mesenchymal stem cells (MSC) have potent immunomodulatory and regenerative effects via soluble factors. One approach to improve stem cell-based therapies is encapsulation of MSC in hydrogels based on natural proteins such as collagen and fibrin, which play critical roles in bone healing. In this work, we comparatively studied the influence of collagen and fibrin hydrogels of varying stiffness on the paracrine interactions established by MSC with macrophages and osteoblasts. Type I collagen and fibrin hydrogels in a similar stiffness range loaded with MSC from donants were prepared by modifying the protein concentration. Viability and morphology of MSC in hydrogels as well as cell migration rate from the matrices were determined. Paracrine actions of MSC in hydrogels were evaluated in co-cultures with human macrophages from healthy blood donors or with osteoblasts from bone explants of patients with osteonecrosis of the femoral head. Lower matrix stiffness resulted in higher MSC viability and migration. Cell migration rate from collagen hydrogels was higher than from fibrin matrices. The secretion of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E. 2. (PGE. 2. ) by MSC in both collagen and fibrin hydrogels increased with increasing matrix stiffness. Tumor necrosis factor-α (TNF-α) secretion by macrophages cultured on collagen hydrogels was lower than on fibrin matrices. Interestingly, higher collagen matrix stiffness resulted in lower secreted TNF-α while the trend was opposite on fibrin hydrogels. In all cases, TNF-α levels were lower when macrophages were cultured on hydrogels containing MSC than on empty gels, an effect partially mediated by PGE. 2. Finally, mineralization capacity of osteoblasts co-cultured with MSC in hydrogels increased with increasing matrix stiffness, although this effect was more notably for collagen hydrogels. Paracrine interactions established by MSC in hydrogels with macrophages and osteoblasts are regulated by matrix composition and stiffness


Bone & Joint Research
Vol. 12, Issue 10 | Pages 667 - 676
19 Oct 2023
Forteza-Genestra MA Antich-Rosselló M Ramis-Munar G Calvo J Gayà A Monjo M Ramis JM

Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 10. 9. particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results. Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion. In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine. Cite this article: Bone Joint Res 2023;12(10):667–676


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 40 - 40
2 Jan 2024
Tryfonidou M
Full Access

Within the field of disc degeneration-related low back pain, the spine community has been increasingly acknowledging the regenerative potential of extracellular vesicles (EVs). EVs are small lipid bilayer-delimited particles naturally released by cells, involved in intercellular signaling. They do so by interacting with recipient cells and releasing their biological cargo (e.g., mRNA, miRNA, DNA, protein, lipid). EVs derived from mesenchymal stromal cells and, more recently, also EVs from notochordal cells, the cells residing within the core of the juvenile human disc, are being actively studied. In general, they have been proposed to mitigate inflammation/catabolic processes, reduce apoptosis, stimulate proliferation and even improve the matrix producing capacity of the treated cells. Within this context, appropriate characterization of EVs is essential to increase the level of evidence that the reported effects are indeed EV-associated. To analyze the purity and biochemical composition of EV preparations the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins co-isolated/recovered with EVs. Alongside, to prove that the effects are EV-associated and not due to co-isolated factors from the tissue or cells used to derive the EVs, appropriate technical controls need to be taken along (during cell/tissue culture). As such the question arises: “what is the evidence so far?”. While from a fundamental perspective EVs are very appealing, the use of natural EVs in clinical applications is challenging. It comes with drawbacks, including biologic variability, yield, cumbersome isolation, and challenging upscaling and storage to achieve industrial levels. To date there is no FDA-approved EV-based therapy for disc-related lower back pain. Nonetheless, EV-based therapeutic approaches have unique advantages over the use of (pluripotent) stem cell-based therapies, such as a high biologic, but low immunogenic and tumorigenic potential. Acknowledgements: This talk is based on experiences from part of the project NC-CHOICE [no. 19251] of the research talent programme VICI financed by the Dutch Research Council (NWO) and the iPSpine project that receives funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 825925


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 51 - 51
17 Nov 2023
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract. Objectives. Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age and gender is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age and gender on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. Methods and Results. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age and gender on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory-based experiments to assess these properties. Compare the extent of the effect of age on MSC cell marker expression, proliferation and pathways. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the synovium, fat pad and bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for antibody cocktail (eg included CD34, CD45). The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. At P2 after extracting RNA, we investigate the gene analysis using Bulk seq. Clear differences between the younger and older patients and gender were indicated. Conclusions. Chronological age and gender-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age and gender on cellular senescence and identify pathways that could be targeted to potentially reverse any age and gender-related changes. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 23 - 23
14 Nov 2024
Ambrosio L Schol J Fernández CR Papalia R Vadalà G Denaro V Sakai D
Full Access

Introduction. Intervertebral disc degeneration (IDD) is a progressive process affecting all disc tissues, namely the nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates (CEPs). Several cell-based therapies have been proposed to replenish the disc cell population and promote tissue regeneration. However, cell-free therapeutics have been increasingly explored due to potentially higher advantages and cost-effectiveness compared to cell transplantation. Recently, extracellular vesicles (EVs) isolated from healthy Tie2. +. -NP cells (NPCs) have shown promising regenerative outcomes on degenerative NPCs (dNPCs). The aim of this study was to assess the effect of such EVs on all disc cell types, including AF cells (AFCs) and CEP cells (CEPCs), compared to EVs isolated from bone-marrow derived mesenchymal stromal cells (BM-MSCs). Method. NPCs harvested from young donors underwent an optimized culture protocol to maximize Tie2 expression (NPCs. Tie2+. ). BM-MSCs were retrieved from a commercial cell line or harvested during spine surgery procedures. EV characterization was performed via particle size analysis (qNano), expression of EV markers (Western blot), and transmission electron microscopy. dNPCs, AFCs, and CEPCs were isolated from surgical specimens of patients affected by IDD, culture-expanded, and treated with NPCs. Tie2+. -EVs or BM-MSC-EVs ± 10 ng/mL IL-1b. EV uptake was assessed with PKH26 staining of EVs under confocal microscopy. Cell proliferation and viability were assessed with the CCK-8 assay. Result. Upon characterization, isolated EVs exhibited the typical exosomal characteristics. NPCs. Tie2+. -EVs and BM-MSC-EVs uptake was successfully observed in all dNPCs, AFCs, and CEPCs. Both EV products significantly increased dNPC, AFC, and CEPC viability, especially in samples treated with NPCs. Tie2+. -EVs. Conclusion. NPCs. Tie2+. -EVs demonstrated to significantly stimulate the proliferation and viability of degenerative cells isolated from all disc tissues. Rather than the sole NP, EVs isolated by committed progenitors physiologically residing within the disc may exert their regenerative effects on the whole organ, thus possibly constituting the basis for a new therapy for IDD


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2021
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract. Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the infrapatellar fat pad using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 40 - 40
1 Nov 2021
Pattappa G Reischl F Jahns J Lang S Zellner J Docheva D Angele P
Full Access

Introduction and Objective. The meniscus is composed of two distinct regions, a vascular outer zone and an avascular inner zone. Due to vascularization, tears within the vascular zone can be treated by suturing. However, tears in the avascular zone have a poor healing capacity and partial meniscectomy is used to prevent further pain, although this leads to early osteoarthritis. Previous studies have demonstrated that the vascular zone contains a progenitor population with multilineage differentiation potential. Isolation and propagation of these progenitors can be used to develop cell-based therapies for treating meniscal defects. In vivo, the meniscus resides under a low oxygen environment, also known as physioxia (2–7% oxygen) and previous work suggests that it promotes the meniscal phenotype. The objective of the study was to isolate progenitor populations from both meniscus regions and to examine their clonogenecity and differentiation potential under both hyperoxia (20% oxygen) and physioxia (2% oxygen). We hypothesize that physioxia will have a beneficial effect on colony formation and trilineage differentiation of meniscal cells. Materials and Methods. Human meniscus (n =4; mean age: 64 + 6) tissue was split into vascular and avascular regions, finely cut into small pieces and then sequentially digested in pronase (70U/mL) and collagenase (200U/mL) at 37. 0. C. Avascular and vascular meniscus cells were counted and split equally for expansion under hyperoxia and physioxia at a seeding density of 5 × 10. 3. cells/cm. 2. At passage 1, cells were seeded at 2, 5 and 20 cells/cm. 2. in 10cm dishes for observing colony formation using crystal violet assay. At passage 3, vascular and avascular meniscus cells were differentiated towards the chondrogenic, osteogenic and adipogenic lineage. Chondrogenesis was evaluated using DMMB staining for GAG deposition, osteogenesis was assessed using Alizarin Red staining for calcium deposition, whilst adipogenesis was observed using Oil-Red-O staining for fat droplets. Results. Expansion of vascular and avascular meniscus cells showed no difference in doubling time between hyperoxic or physioxic culture. However, physioxia significantly increased the number of colonies compared to hyperoxia for both meniscus cell types (p < 0.05). Both vascular and avascular meniscus cells differentiated towards the chondrogenic, osteogenic and adipogenic lineage under both oxygen tensions. Interestingly, we observed greater DMMB, alizarin red and oil-red-o staining for vascular meniscal cells under physioxia compared to corresponding hyperoxic cultures and avascular meniscal cells. Conclusions. Physioxia enhances the clonogenecity of vascular and avascular meniscus cells. Trilineage differentiation potential was observed from both regions with increased capacity detected under physioxia for vascular meniscal cells. Physioxic isolation of meniscal cells for the propagation of these progenitors can used be for the treatment of meniscal tears/defects