Advertisement for orthosearch.org.uk
Results 1 - 20 of 823
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 922 - 928
1 Aug 2022
Png ME Petrou S Fernandez MA Achten J Parsons N McGibbon A Gould J Griffin XL Costa ML

Aims. The aim of this study was to compare the cost-effectiveness of cemented hemiarthroplasty (HA) versus hydroxyapatite-coated uncemented HA for the treatment of displaced intracapsular hip fractures in older adults. Methods. A within-trial economic evaluation was conducted based on data collected from the World Hip Trauma Evaluation 5 (WHiTE 5) multicentre randomized controlled trial in the UK. Resource use was measured over 12 months post-randomization using trial case report forms and participant-completed questionnaires. Cost-effectiveness was reported in terms of incremental cost per quality-adjusted life year (QALY) gained from the NHS and personal social service perspective. Methodological uncertainty was addressed using sensitivity analysis, while decision uncertainty was represented graphically using confidence ellipses and cost-effectiveness acceptability curves. Results. The base-case analysis showed that cemented implants were cost-saving (mean cost difference -£961 (95% confidence interval (CI) -£2,292 to £370)) and increased QALYs (mean QALY difference 0.010 (95% CI 0.002 to 0.017)) when compared to uncemented implants. The probability of the cemented implant being cost-effective approximated between 95% and 97% at alternative cost-effectiveness thresholds held by decision-makers, and its net monetary benefit was positive. The findings remained robust against all the pre-planned sensitivity analyses. Conclusion. This study shows that cemented HA is cost-effective compared with hydroxyapatite-coated uncemented HA in older adults with displaced intracapsular hip fractures. Cite this article: Bone Joint J 2022;104-B(8):922–928


Bone & Joint Research
Vol. 5, Issue 11 | Pages 531 - 537
1 Nov 2016
Burgo FJ Mengelle DE Ozols A Fernandez C Autorino CM

Objectives. Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions. Methods. An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in cadaveric bone femurs with and without cement. Two stems of different alloy and geometry were compared. Results. The magnitudes of the maximum amplitudes of the bare stem were in the range of 10.8 V to 11.8 V, whereas the amplitudes for the same stems with a cement mantle in a cadaveric bone decreased to 0.3 V to 0.7 V, implying a pulse-attenuation efficiency of greater than 97%. The same magnitude is close to 40% when the comparison is made against stems implanted in cadaveric bone femurs without cement. Conclusion. The in vitro model presented here has shown that the cement had a remarkable effect on sound attenuation and a strong energy absorption in cement mantle and bone. The visco-elastic properties of cement can contribute to the dissipation of vibro-acoustic energy, thus preventing hip prostheses from squeaking. This could explain, at least in part, the lack of reports of squeaking when hybrid fixation is used. Cite this article: F. J. Burgo, D. E. Mengelle, A. Ozols, C. Fernandez, C. M. Autorino. The damping effect of cement as a potential mitigation factor of squeaking in ceramic-on-ceramic total hip arthroplasty. Bone Joint Res 2016;5:531–537. DOI: 10.1302/2046-3758.511.BJR-2016-0058.R1


Bone & Joint Open
Vol. 1, Issue 3 | Pages 13 - 18
1 Mar 2020
Png ME Fernandez MA Achten J Parsons N McGibbon A Gould J Griffin X Costa ML

Aim. This paper describes the methods applied to assess the cost-effectiveness of cemented versus uncemented hemiarthroplasty among hip fracture patients in the World Hip Trauma Evaluation Five (WHiTE5) trial. Methods. A within-trial cost-utility analysis (CUA) will be conducted at four months postinjury from a health system (National Health Service and personal social services) perspective. Resource use pertaining to healthcare utilization (i.e. inpatient care, physiotherapy, social care, and home adaptations), and utility measures (quality-adjusted life years) will be collected at one and four months (primary outcome endpoint) postinjury; only treatment of complications will be captured at 12 months. Sensitivity analysis will be conducted to assess the robustness of the results. Conclusion. The planned analysis strategy described here records our intent to conduct a within-trial CUA alongside the WHiTE5 trial


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1441 - 1449
1 Nov 2016
Petheram TG Whitehouse SL Kazi HA Hubble MJW Timperley AJ Wilson MJ Howell JR

Aims. We present a minimum 20-year follow-up study of 382 cemented Exeter Universal total hip arthroplasties (350 patients) operated on at a mean age of 66.3 years (17 to 94). Patients and Methods. All patients received the same design of femoral component, regardless of the original diagnosis. Previous surgery had been undertaken for 33 hips (8.6%). During the study period 218 patients with 236 hips (62%) died, 42 hips (11%) were revised and 110 hips (29%) in 96 patients were available for review. The acetabular components were varied and some designs are now obsolete, however they were all cemented. Results. With an endpoint of revision for aseptic loosening or lysis, survivorship of the stem at 22.8 years was 99.0% (95% confidence interval (CI) 97.0 to 100). One stem was revised 21 years post-operatively in a patient with Gaucher’s disease and proximal femoral osteolysis. Survivorship with aseptic loosening or lysis of the acetabular component or stem as the endpoint at 22.8 years was 89.3% (95% CI 84.8 to 93.8). With an endpoint of revision for any reason, overall survivorship was 82.9% (95% CI 77.4 to 88.4) at 22.8 years. Radiological review showed excellent preservation of bone stock at 20 to 25 years, and no impending failures of the stem. Conclusion. The Exeter femoral stem continues to perform well beyond 20 years. Cite this article: Bone Joint J 2016;98-B:1441–9


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1611 - 1617
1 Dec 2012
Jameson SS Baker PN Mason J Gregg PJ Brewster N Deehan DJ Reed MR

Despite excellent results, the use of cemented total hip replacement (THR) is declining. This retrospective cohort study records survival time to revision following primary cemented THR using the most common combination of components that accounted for almost a quarter of all cemented THRs, exploring risk factors independently associated with failure. All patients with osteoarthritis who had an Exeter V40/Contemporary THR (Stryker) implanted before 31 December 2010 and recorded in the National Joint Registry for England and Wales were included in the analysis. Cox’s proportional hazard models were used to analyse the extent to which risk of revision was related to patient, surgeon and implant covariates, with a significance threshold of p < 0.01. A total of 34 721 THRs were included in the study. The overall seven-year rate of revision for any reason was 1.70% (99% confidence interval (CI) 1.28 to 2.12). In the final adjusted model the risk of revision was significantly higher in THRs with the Contemporary hooded component (hazard ratio (HR) 1.88, p < 0.001) than with the flanged version, and in smaller head sizes (< 28 mm) compared with 28 mm diameter heads (HR 1.50, p = 0.005). The seven-year revision rate was 1.16% (99% CI 0.69 to 1.63) with a 28 mm diameter head and flanged component. The overall risk of revision was independent of age, gender, American Society of Anesthesiologists grade, body mass index, surgeon volume, surgical approach, brand of cement/presence of antibiotic, femoral head material (stainless steel/alumina) and stem taper size/offset. However, the risk of revision for dislocation was significantly higher with a ‘plus’ offset head (HR 2.05, p = 0.003) and a hooded acetabular component (HR 2.34, p < 0.001). In summary, we found that there were significant differences in failure between different designs of acetabular component and sizes of femoral head after adjustment for a range of covariates


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1002 - 1009
1 Aug 2018
Westerman RW Whitehouse SL Hubble MJW Timperley AJ Howell JR Wilson MJ

Aims

The aim of this study was to report the initial results of the Exeter V40 stem, which became available in 2000.

Patients and Methods

A total of 540 total hip arthroplasties (THAs) were performed in our unit using this stem between December 2000 and May 2002. Our routine protocol is to review patients postoperatively and at one, five, and ten years following surgery.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 507 - 515
6 Jul 2023
Jørgensen PB Jakobsen SS Vainorius D Homilius M Hansen TB Stilling M

Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up. Results. At three months, subsidence of the short stem -0.87 mm (95% confidence interval (CI) -1.07 to -0.67) was lower compared to the standard stem -1.59 mm (95% CI -1.82 to -1.36; p < 0.001). Both stems continued a similar pattern of subsidence until five-year follow-up. At five-year follow-up, the short stem had subsided mean -1.67 mm (95% CI -1.98 to -1.36) compared to mean -2.67 mm (95% CI -3.03 to -2.32) for the standard stem (p < 0.001). Subsidence was not influenced by preoperative bone quality (osteopenia vs normal) or cement mantle thickness. Conclusion. The standard Exeter stem had more early subsidence compared with the short Exeter stem in patients with Dorr type A femora, but thereafter a similar migration pattern of subsidence until minimum five years follow-up. Both the standard and the short Exeter stems subside. The standard stem subsides more compared to the short stem in Dorr type A femurs. Subsidence of the Exeter stems was not affected by cement mantle thickness. Cite this article: Bone Jt Open 2023;4(7):507–515


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 19 - 26
1 Jan 2022
Sevaldsen K Schnell Husby O Lian ØB Farran KM Schnell Husby V

Aims. Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line cementing technique of the femoral stem, designed to achieve stem press-fit, challenges this opinion. We compared the migration of a highly polished stem with force-closed design by standard and line-to-line cementing to investigate whether differences in early migration of the stems occur in a clinical study. Methods. In this single-blind, randomized controlled, clinical radiostereometric analysis (RSA) study, the migration pattern of the cemented Corail hip stem was compared between line-to-line and standard cementing in 48 arthroplasties. The primary outcome measure was femoral stem migration in terms of rotation and translation around and along with the X-, Y-, and Z- axes measured using model-based RSA at three, 12, and 24 months. A linear mixed-effects model was used for statistical analysis. Results. Results from mixed model analyses revealed a lower mean retroversion for line-to-line (0.72° (95% confidence interval (CI) 0.38° to 1.07°; p < 0.001), but no significant differences in subsidence between the techniques (-0.15 mm (95% CI -0.53 to 0.227; p = 0.429) at 24 months. Radiolucent lines measuring < 2 mm wide were found in three and five arthroplasties cemented by the standard and line-to-line method, respectively. Conclusion. The cemented Corail stem with a force-closed design seems to settle earlier and better with the line-to-line cementing method, although for subsidence the difference was not significant. However, the lower rate of migration into retroversion may reduce the wear and cement deformation, contributing to good long-term fixation and implant survival. Cite this article: Bone Joint J 2022;104-B(1):19–26


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 435 - 441
1 May 2024
Angelomenos V Mohaddes M Kärrholm J Malchau H Shareghi B Itayem R

Aims. Refobacin Bone Cement R and Palacos R + G bone cement were introduced to replace the original cement Refobacin Palacos R in 2005. Both cements were assumed to behave in a biomechanically similar fashion to the original cement. The primary aim of this study was to compare the migration of a polished triple-tapered femoral stem fixed with either Refobacin Bone Cement R or Palacos R + G bone cement. Repeated radiostereometric analysis was used to measure migration of the femoral head centre. The secondary aims were evaluation of cement mantle, stem positioning, and patient-reported outcome measures. Methods. Overall, 75 patients were included in the study and 71 were available at two years postoperatively. Prior to surgery, they were randomized to one of the three combinations studied: Palacos cement with use of the Optivac mixing system, Refobacin with use of the Optivac system, and Refobacin with use of the Optipac system. Cemented MS30 stems and cemented Exceed acetabular components were used in all hips. Postoperative radiographs were used to assess the quality of the cement mantle according to Barrack et al, and the position and migration of the femoral stem. Harris Hip Score, Oxford Hip Score, Forgotten Joint Score, and University of California, Los Angeles Activity Scale were collected. Results. Median distal migration (y-axis) at two years for the Refobacin-Optivac system was -0.79 mm (-2.01 to -0.09), for the Refobacin-Optipac system was -0.75 mm (-2.16 to 0.20), and for the Palacos-Optivac system was -1.01 mm (-4.31 to -0.29). No statistically significant differences were found between the groups. Secondary outcomes did not differ statistically between the groups at the two-year follow-up. Conclusion. At two years, we found no significant differences in distal migration or clinical outcomes between the three groups. Our data indicate that Refobacin Bone Cement R and Palacos R + G are comparable in terms of stable fixation and early clinical outcomes. Cite this article: Bone Joint J 2024;106-B(5):435–441


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 212 - 220
1 Feb 2022
Fishley WG Selvaratnam V Whitehouse SL Kassam AM Petheram TG

Aims. Femoral cement-in-cement revision is a well described technique to reduce morbidity and complications in hip revision surgery. Traditional techniques for septic revision of hip arthroplasty necessitate removal of all bone cement from the femur. In our two centres, we have been using a cement-in-cement technique, leaving the distal femoral bone cement in selected patients for septic hip revision surgery, both for single and the first of two-stage revision procedures. A prerequisite for adoption of this technique is that the surgeon considers the cement mantle to be intimately fixed to bone without an intervening membrane between cement and host bone. We aim to report our experience for this technique. Methods. We have analyzed patients undergoing this cement-in-cement technique for femoral revision in infection, and present a consecutive series of 89 patients. Follow-up was undertaken at a mean of 56.5 months (24.0 to 134.7) for the surviving cases. Results. Seven patients (7.9%) required further revision for infection. Ten patients died of causes unrelated to their infection before their two-year review (mean 5.9 months; 0.9 to 18.6). One patient was lost to follow-up at five months after surgery, and two patients died of causes unrelated to their hip shortly after their two-year review was due without attending. Of the remaining patients, 69 remained infection-free at final review. Radiological review confirms the mechanical success of the procedure as previously described in aseptic revision, and postoperative Oxford Hip Scores suggest satisfactory functional outcomes. Conclusion. In conclusion, we found that retaining a well-fixed femoral cement mantle in the presence of infection and undertaking a cement-in-cement revision was successful in 82 of the patients (92.1%) in our series of 89, both in terms of eradication of infection and component fixation. These results are comparable to other more invasive techniques and offer significant potential benefits to the patient. Cite this article: Bone Joint J 2022;104-B(2):212–220


Bone & Joint Open
Vol. 2, Issue 5 | Pages 278 - 292
3 May 2021
Miyamoto S Iida S Suzuki C Nakatani T Kawarai Y Nakamura J Orita S Ohtori S

Aims. The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. Methods. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis. Results. RLLs were detected in 27.2% of patients one year postoperatively. In multivariate regression analysis controlling for confounders, atrophic osteoarthritis (odds ratio (OR) 2.17 (95% confidence interval (CI), 1.04 to 4.49); p = 0.038) and 26 mm (OR 3.23 (95% CI 1.85 to 5.66); p < 0.001) or 28 mm head diameter (OR 3.64 (95% CI 2.07 to 6.41); p < 0.001) had a significantly greater risk for any RLLs one year after surgery. Structural bone graft (OR 0.19 (95% CI 0.13 to 0.29) p < 0.001) and location of the hip centre within the true acetabular region (OR 0.15 (95% CI 0.09 to 0.24); p < 0.001) were significantly less prognostic. Improvement of the cement-bone interface including complete disappearance and poorly defined RLLs was identified in 15.1% of patients. Kaplan-Meier survival analysis for the acetabular component at ten years with revision of the acetabular component for aseptic loosening as the end point was 100.0% with a RLL and 99.1% without a RLL (95% CI 97.9 to 100). With revision of the acetabular component for any reason as the end point, the survival rate was 99.2% with a RLL (95% CI 97.6 to 100) and 96.5% without a RLL (95% CI 93.4 to 99.7). Conclusion. This study demonstrates that acetabular bone quality, head diameter, structural bone graft, and hip centre position may influence the presence of the any RLL. Cite this article: Bone Joint Open 2021;2(5):278–292


Bone & Joint Open
Vol. 4, Issue 3 | Pages 198 - 204
16 Mar 2023
Ramsay N Close JCT Harris IA Harvey LA

Aims. Cementing in arthroplasty for hip fracture is associated with improved postoperative function, but may have an increased risk of early mortality compared to uncemented fixation. Quantifying this mortality risk is important in providing safe patient care. This study investigated the association between cement use in arthroplasty and mortality at 30 days and one year in patients aged 50 years and over with hip fracture. Methods. This retrospective cohort study used linked data from the Australian Hip Fracture Registry and the National Death Index. Descriptive analysis and Kaplan-Meier survival curves tested the unadjusted association of mortality between cemented and uncemented procedures. Multilevel logistic regression, adjusted for covariates, tested the association between cement use and 30-day mortality following arthroplasty. Given the known institutional variation in preference for cemented fixation, an instrumental variable analysis was also performed to minimize the effect of unknown confounders. Adjusted Cox modelling analyzed the association between cement use and mortality at 30 days and one year following surgery. Results. The 30-day mortality was 6.9% for cemented and 4.9% for uncemented groups (p = 0.003). Cement use was significantly associated with 30-day mortality in the Kaplan-Meier survival curve (p = 0.003). After adjusting for covariates, no significant association between cement use and 30-day mortality was shown in the adjusted multilevel logistic regression (odd rati0 (OR) 1.1, 95% confidence interval (CI) 0.9 to 1.5; p = 0.366), or in the instrumental variable analysis (OR 1.0, 95% CI 0.9 to 1.0, p=0.524). There was no significant between-group difference in mortality within 30days (hazard ratio (HR) 0.9, 95% CI 0.7to 1.1; p = 0.355) or one year (HR 0.9 95% CI 0.8 to 1.1; p = 0.328) in the Cox modelling. Conclusion. No statistically significant difference in patient mortality with cement use in arthroplasty was demonstrated in this population, once adjusted for covariates. This study concludes that cementing in arthroplasty for hip fracture is a safe means of surgical fixation. Cite this article: Bone Jt Open 2023;4(3):198–204


Bone & Joint Research
Vol. 6, Issue 5 | Pages 351 - 357
1 May 2017
Takahashi E Kaneuji A Tsuda R Numata Y Ichiseki T Fukui K Kawahara N

Objectives. Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. Methods. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem. Results. A strong positive correlation was observed between mean cement thickness and stem subsidence in the CT slices on the balls. In the small stems, the balls moved downward to almost the same extent as the stem. There was a significant negative correlation between cement thickness and the horizontal:downward ratio of ball movement. Conclusion. Collarless polished tapered stems with thicker cement mantles resulted in greater subsidence of both stem and cement. This suggests that excessive thickness of the cement mantle may interfere with effective radial cement creep. Cite this article: E. Takahashi, A. Kaneuji, R. Tsuda, Y. Numata, T. Ichiseki, K. Fukui, N. Kawahara. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental? Bone Joint Res 2017;6:–357. DOI: 10.1302/2046-3758.65.BJR-2017-0028.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 13 - 13
1 Jan 2018
Maggs J Swanton E Wilson M Gie G
Full Access

Standard practice in revision total hip replacement (THR) for periprosthetic fracture (PPF) is to remove all cement from the femoral canal prior to implantation of a new component. This can make the procedure time consuming and complex. Since 1991 it has been our practice to preserve the old femoral cement where it remains well fixed to bone, even if the cement mantle is fractured, and to cement a new component into the old mantle. We have reviewed the data of 48 consecutive patients, treated at our unit between 1991 and 2009, with a first PPF around a cemented primary THR stem where a cement in cement revision was performed. 8 hips were revised to a standard length stem, 39 hips to a long stem & 1 patient had the same stem reinserted. All fractures were reduced and held with cerclage wires or cables and four had supplementary plate fixation. Full clinical and radiographic follow up was available in 38 patients & clinical or radiographic follow up in a further 6 patients. The other 4 patients. without follow up but whose outcome is known, have suffered no complications and are pain free. Of the remaining 44 patients, forty-two went on to union of the fracture and two have required further surgery for non-union. One patient has ongoing undiagnosed hip pain. Our long term experience with cement in cement revision for periprosthetic femoral fractures shows that this is a viable technique with a low complication rate and high rate of union (95%) in what is generally regarded as a very difficult condition to treat


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 52 - 52
1 Nov 2015
Marsh A Kennedy I Nisar A Patil S Meek R
Full Access

Introduction. Cement in cement revision with preservation of the original cement mantle has become an attractive and commonly practised technique in revision hip surgery. Since introducing this technique to our unit we have used two types of polished tapered stem. We report the clinical and radiological outcomes for cement in cement femoral revisions performed using these prostheses. Materials and Methods. All patients who underwent femoral cement in cement revision with a smooth tapered stem between 2005 –2013 were assessed. Data collected included indication for revision surgery and components used. All patients were followed up annually. Outcomes recorded were radiographic analysis, clinical outcome scores (Oxford Hip Score, WOMAC and SF-12) and complications, including requirement for further revision surgery. Median follow-up was 5 years (range 1 – 8 years). 116 revision procedures utilising cement in cement femoral revision were performed in the 8 year study period (68 females, 48 males, and mean age of 69 years). The femoral component was a C-stem AMT (Depuy) in 59 cases and Exeter stem (Stryker) in 57 cases. Results. Radiographic analysis demonstrated no progressive radiolucencies around the femoral component in any patient and no evidence of stem loosening at most recent review. Median Oxford Hip Score increased from 15 to 32, WOMAC from 22 to 38, and SF-12 from 25 to 32. Two patients had a further revision procedure for recurrent dislocation and 1 patient for infection. Two patients had a peri-prosthetic fracture at 4 years following initial revision surgery. There were 2 femoral stem fractures (occurring at 3 and 4 years post revision, both occurring in Exeter stems). Conclusion. Our results report cement in cement revision of the femoral component provides promising mid-term radiographic and clinical results. No femoral stems required revision for aseptic loosening. Stem fracture however occurred in 2 cases suggesting stem design is crucial for this technique


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 144 - 150
1 Feb 2024
Lynch Wong M Robinson M Bryce L Cassidy R Lamb JN Diamond O Beverland D

Aims. The aim of this study was to determine both the incidence of, and the reoperation rate for, postoperative periprosthetic femoral fracture (POPFF) after total hip arthroplasty (THA) with either a collared cementless (CC) femoral component or a cemented polished taper-slip (PTS) femoral component. Methods. We performed a retrospective review of a consecutive series of 11,018 THAs over a ten-year period. All POPFFs were identified using regional radiograph archiving and electronic care systems. Results. A total of 11,018 THAs were implanted: 4,952 CC femoral components and 6,066 cemented PTS femoral components. Between groups, age, sex, and BMI did not differ. Overall, 91 patients (0.8%) sustained a POPFF. For all patients with a POPFF, 16.5% (15/91) were managed conservatively, 67.0% (61/91) underwent open reduction and internal fixation (ORIF), and 16.5% (15/91) underwent revision. The CC group had a lower POPFF rate compared to the PTS group (0.7% (36/4,952) vs 0.9% (55/6,066); p = 0.345). Fewer POPFFs in the CC group required surgery (0.4% (22/4,952) vs 0.9% (54/6,066); p = 0.005). Fewer POPFFs required surgery in males with a CC than males with a PTS (0.3% (7/2,121) vs 1.3% (36/2,674); p < 0.001). Conclusion. Male patients with a PTS femoral component were five times more likely to have a reoperation for POPFF. Female patients had the same incidence of reoperation with either component type. Of those having a reoperation, 80.3% (61/76) had an ORIF, which could greatly mask the size of this problem in many registries. Cite this article: Bone Joint J 2024;106-B(2):144–150


Background. Antibiotic loaded bone cement (ALBC) is commonly used in cemented total hip arthroplasty (THA) in an attempt to reduce the risk of prosthetic joint infection (PJI). However, its role versus plain cement remains controversial due to the potential risk of developing resistant organisms and potential excess costs incurred from its usage. We investigated the relationship of ALBC and plain cement in affecting outcome of revision surgery after primary THA. Methodology. We conducted a retrospective study of data collected from National Joint Registry for England and Wales, Northern Ireland and the Isle of Man between 1. st. September 2005 until 31. st. August 2017. A logistic regression analysis model was used to investigate the association between ALBC versus plain cement and the odds ratio (OR) for revision, adjusting for age, ASA grade, bearing surfaces, head size and cup and stem fixation. Indications for revision recorded in NJR were considered in separate models. Results. We identified 418,925 THAs where bone cements were used (22,037 plain cement; 396,888 ALBC). After adjusting for confounding factors, the risk of revision for infection was lower with ALBC (OR 0.77, 95% CI 0.62–0.95). There was also lower risk of revision for aseptic loosening of stem (OR 0.53, 95% CI 0.39–0.72), aseptic loosening of socket (OR 0.46, 95% CI 0.37– 0.58). When breaking down hips into fully cemented or hybrid fixation, the protective effect of ALBC against infection was only apparent in fully cemented (OR 0.65, 95% CI 0.48–0.87) when compared against hybrid fixation (OR 0.90, 95% CI 0.66–1.23). Discussion. Within the limits of registry analysis, this study has demonstrated an association between the use of ALBC and lower rates of revision for infection and aseptic loosening. Conclusion. This finding supports the current use of ABLC in cemented THAs


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 31 - 36
1 Jan 2009
de Jong PT de Man FHR Haverkamp D Marti RK

We report the long-term outcome of a modified second-generation cementing technique for fixation of the acetabular component of total hip replacement. An earlier report has shown the superiority of this technique assessed by improved survival compared with first-generation cementing. The acetabular preparation involved reaming only to the subchondral plate, followed by impaction of the bone in the anchorage holes. Between 1978 and 1993, 287 total hip replacements were undertaken in 244 patients with a mean age of 65.3 years (21 to 90) using a hemispherical Weber acetabular component with this modified technique for cementing and a cemented femoral component. The survival with acetabular revision for aseptic loosening as the endpoint was 99.1% (95% confidence interval 97.9 to 100 after ten years and 85.5% (95% confidence interval 74.7 to 96.2) at 20 years. Apart from contributing to a long-lasting fixation of the component, this technique also preserved bone, facilitating revision surgery when necessary


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 26 - 26
7 Jun 2023
Hoskins Z Kumar G Gangadharan R
Full Access

Periprosthetic femoral fractures are increasingly seen in recent years, adding considerable burden to the National Health Service. These require complex revision or fixation and prolonged post-operative care, with significant morbidity with associated costs. The purpose of this study was to assess whether the size of femoral cement mantle is associated with periprosthetic femoral fractures (PPF). This retrospective study was carried out on a cohort of 49 patients (Fracture Group - FG) who previously had a revision procedure following a proximal PPF between 2010 and 2021. Inclusion criteria – all primary cemented total hip replacements (THR). Exclusion criteria – complex primary THR, any implant malposition that required early revision surgery or any pre-fracture stem loosening. The antero-posterior (AP) radiographs from this cohort of patients were assessed and compared to an age, sex, time since THR-matched control group of 49 patients without PPF (Control Group - CG). Distal cement mantle area (DCMA) was calculated on an AP radiograph of hip; the position of the femoral stem tip prior to fracture was also recorded: valgus, varus or central. Limitations: AP radiographs only. Statistical analyses were performed using Microsoft® Excel. Chi-square test demonstrated statistically significant difference in DCMA between FG and CG. DCMA of 700 to 900 mm² appeared to be protective when compared to DCMA of 0 to 300 mm². Also, a valgus position observed in 23% in FG Vs 4 % in CG increased the risk, with a smaller area of DCMA. This study demonstrates and recommends that a size of 700 – 900 mm² of the DCMA is protective against periprosthetic fractures, which are further influenced by the positioning of the distal stem tip. This could be due to the gradual decrease in the stiffness gradient from proximal to distal around the stem tip than steep changes, thereby decreasing possibility of a stress riser just distal to the cement mantle or restrictor. Further biomechanical research specific to this finding may be helpful to validate the observation, progressing to suggest a safe standardised surgical technique


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. Methods. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Results. The distribution of acetabular component geometries was: LPW 81.2%; hooded 18.7%; and offset reorientating 0.1%. There were 3,313 (1.5%) revision THAs performed, of which 815 (0.4%) were for instability and 838 (0.4%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.31 (p < 0.001) and 4.12 (p = 0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.65 (p < 0.001) in the hooded group and 13.61 (p < 0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first three months. Conclusion. This registry-based study confirms a significantly higher risk of revision after cemented THA for instability and for loosening when a hooded or offset reorientating acetabular component is used, compared to a LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice. Cite this article: Bone Joint J 2021;103-B(11):1669–1677