While high-performance
Biomaterials improve the quality of life for an ever increasing number of people each year. The range of applications is vast and includes such things as joint and limb replacements, artificial arteries and skin, contact lenses and dentures. Ceramic biomaterials can be divided roughly into three main types governed by their in vivo behaviour and tissue response. In broad terms, there are the bioresorbable
CaSiO3 has been used a potential bioactive material for bone regeneration. A drawback of the CaSiO3
Alumina and zirconia are known for their general chemical inertness and hardness. These properties are exploited for implant purposes, where they are used as an articulating surface in hip and knee joints. Their ability to be polished to a high surface finish make them an ideal candidate for such wear applications, where they compete against materials such as ultra-high-molecular-weight polyethylene. Alumina is a highly inert material and resistant to most corrosive environments. The term high alumina
Sufficient vascularization is essential for osseointegration of biomaterials and their substitution by new bone. Angiogenic growth factors such as VEGF are promising agents to promote the vascularization of bone substitutes. To optimize the efficacy of VEGF delivery a continuous administration of low concentrations of VEGF seems to be beneficial. We hypothesized that a long-term release of VEGF from calcium phosphate
Background. Theoretically, improved material properties of new alumina matrix composite (AMC) material, Delta
In total hip arthroplasty (THA), aseptic loosening induced by polyethylene (PE) wear debris is the most important cause that limits the longevity of implants. Abrasive wear generated through the mechanism such that micrometer-roughened regions and small asperities on the metallic femoral heads surface locally plow through the PE cup surface. Abrasive wear results in the PE material being removed from the track traced by the asperity during the motion of the metallic femoral heads surface. For the purpose of reducing wear, alumina
The reconstruction of bone defects with biomaterials represents a potential alternative to the transplantation of autologous and allogenic bone. Ceramic materials can be combined with growth factors (i.e. BMPs) to render them osteoinductive. Coating of biomaterials with growth factors has mostly been attempted by adsorption onto the material’s surface. The superficial deposition usually results in an immediate passive release of the proteins, thus restricting their temporal availability during bone healing. It was hypothesized that a co-precipitation of proteins onto calcium phosphate
Oxide
Currently available calcium silicate based
Although alumina has been used in orthopaedic surgery since the 1970s, the long-term clinical results of zirconia have not been well documented in vivo. We studied hips with these two different
In biomaterial engineering the surface of an implant can influence cell differentiation, adhesion and affinity towards the implant. Increased bone marrow derived mesenchymal stromal cell (BMSC) differentiation towards bone forming osteoblasts, on contact with an implant, can improve osteointegration. The process of micropatterning has been shown to improve osteointegration in polymers, but there are few reports surrounding
Aims. Early evidence has emerged suggesting that ceramic-on-ceramic
articulations induce a different tissue reaction to ceramic-on-polyethylene
and metal-on-metal bearings. Therefore, the aim of this study was
to investigate the tissue reaction and cellular response to ceramic
total hip arthroplasty (THA) materials in vitro,
as well as the tissue reaction in capsular tissue after revision
surgery of ceramic-on-ceramic THAs. Patients and Methods. We investigated tissue collected at revision surgery from nine
ceramic-on-ceramic articulations. we compared our findings with
tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene
THAs, and four primary osteoarthritis synovial membranes. The latter
were analyzed to assess the amount of tissue fibrosis that might
have been present at the time of implantation to enable evaluation,
in relation to implantation time, of any subsequent response in
the tissues. Results. There was a significant increase in tissue fibrosis with implantation
time for all implant types tested. Interestingly, the tissue fibrosis
in ceramic-on-ceramic THAs was significantly increased compared
with metal-on-metal and ceramic-on-polyethylene. Additionally, we
found ceramic wear particles in the periprosthetic tissue of ceramic implants.
Fibroblasts responded with expression of cytokines when cultured
on alumina-toughened zirconia (ATZ) and zirconia-toughened alumina
(ZTA) ceramic surfaces. This response was more pronounced on ATZ
ceramics compared with ZTA
Summary Statement. Repetitive concavities threaded on the surface of bone implants have been already demonstrated to be effective on ectopic bone formation in vivo. The aim of this study was to investigate the effect of concavity on the mineralization process in vitro. Introduction. The role of implant surface geometry in bone formation has been extensively investigated. Ripamonti and co. investigated the possibility to induce bone formation by threading concavities on the surface of calcium phosphate implants, without the need for exogenous osteogenic soluble factors. The underlying hypothesis was that this geometry, by resembling the hemi-osteon trench observable during osteoclastogenesis, was able to activate the ripple-like cascade of bone tissue induction and morphogenesis. Despite several studies indicating a positive effect of concavities on bone induction, so far no attempts have rationalised this phenomenon by means of in vitro tests. Consequently, this study aimed to evaluate the effect of surface concavities on the mineralization of hydroxyapatite (HA) and beta-tricalciumphosphate (b-TCP)
Ceramic-on-ceramic was shown to have advantageous tribologic properties (low wear and friction). For medical applications two
Purpose of the study: Biphasic macroporous phosphocalcium
INTRODUCTION. Wear, aseptic loosening, dislocation, corrosion and prosthetic joint infection (PJI) are major factors leading to revision of THA. The effect of using ceramic components to address these issues was investigated to determine their behaviour and potential benefit. METHODS. a) Wear determination in off-normal conditions. A series of CoC articulations (32mm) was evaluated using a hip simulator (ISO 14242) up to 4 million cycles in presence of fine alumina particles (48mg/ml). Wear was measured gravimetrically. b) Friction moment determination. Friction moments were measured in a hip simulator with 25% newborn calf serum as lubricant. CoC, CoPE, MoPE, MoXLPE and CoXLPE with articulating diameters ranging between 28 and 40mm were used. The cup was inclined to a constant angle of 33° and rotated ±20° sinusoidally around a horizontal axis at 1Hz. Peak friction moments were measured around the cup rotation axis during a constant joint force period of 1700N between 200 and 210 seconds. c) Infections. Four databases were analysed and additionally data from registers and literature were reviewed to determine the risk of revision for prosthetic joint infection (PJI) dependence on the bearing. Only data for cementless THA were used. Several studies also included analysis of several confounding factors like age at surgery, BMI, pathology, etc. using Cox multivariate analysis. RESULTS. a) Wear determination in off-normal conditions. Loading the test medium with alumina particles didn't produces detectable wear. Opaque areas appeared only after 3 million load cycles, but the wear-rate remained within the gravimetric measurement detection limit (about 0.1–0.2mg) indicating the still extremely low wear-rate of the tested couplings. b) Friction moment determination. The highest moments were measured for metal heads; the lowest for CoC bearings. 40mm CoC bearing showed a similar friction moment like 28mm bearings when coupled with a XLPE liner. c) Infections. The rate of revisions for PJI for 500'749 patients from various studies was in the range of 0.2 to 1.1%. Age at surgery and BMI did not influence septic loosening, while the bearing did; sometimes significant. The trend was identical for all seven sources and ceramic components resulted in a lower incidence of revisions for up to 60%. CONCLUSION. The wear of CoC articulations is extremely low even in a heavily contaminated environment with fine hard particles. Such high scratch resistance makes CoC the preferable revision solution in THA. Friction moments with CoC are the lowest, even with large diameter bearings. The low friction moments of
Introduction. Silicon nitride (Si3N4) is a ceramic material presently implanted during spine surgery. It has a fortunate combination of material properties such as high strength and fracture toughness, inherent phase stability, scratch resistance, low wear, biocompatibility, hydrophilic behavior, easier radiographic imaging and resistance to bacterial biofilm formation, all of which make it an attractive choice for orthopaedic applications beyond spine surgery. Unlike oxide
Introduction. Looking for optimal solutions to wear risks evident in total hip arthroplasty (THA), silicon nitride ceramic bearings (Si. 3. N. 4. ) are noted for demanding high-temperature applications such as diesel engines and aerospace bearings. As high-strength ceramic for orthopedic applications, Si. 3. N. 4. offers improved fracture toughness and fracture strength over contemporary aluminas (Al. 2. O. 3. ). Our pilot studies of Si. 3. N. 4. in 28mm diameter THA showed promising results at ISTA meeting of 2007. 1. In this simulator study, we compared the wear resistance of 40mm to 28mm diameter Si. 3. N. 4. bearings. The 28mm and 40mm bearings (Fig. 1) were fabricated from Si. 3. N. 4. powder (Amedica Inc, Salt Lake City, UT). 1. Wear tests run were run at 3kN peak load in an orbital hip simulator (SWM, Monrovia, CA) and. The lubricant was standard bovine serum (Hyclone: diluted to 17 mg/ml protein concentration). Wear was measured by gravimetric method and wear-rates calculated by linear regression. SEM and interferometic microscopic was performed at 3.5-million cycles (3.5Mc) to 12Mc. The simulator was run to 3.5Mc duration with no consistent weight-loss trends. The bearings could show either small positive or negative weight fluctuations in an unpredictable manner (Fig. 2). Surface analysis showed protein layers up to 3μm thick, furrowed due to abrasion by small particles (Fig. 3). The low ceramic wear was camouflaged by protein contaminants alternatively forming and shedding. From 3.5 to 12.8Mc duration we experimented with various detergents and wash-procedures, all to no avail. Protein coatings were also more prevalent on 44 mm heads, likely due to frictional heating by the larger diameter effect. Selected heads were washed with a mild acid solution - the cumulative effect appeared to be removal of some protein layers, but not in a predictable manner. The Si. 3. N. 4. ceramic is used in demanding industrial applications and it is therefore unfortunate that we are yet not able to quantify the actual wear performance of Si. 3. N. 4. / Si. 3. N. 4. bearings (COC). The contaminating protein layers combined with low-wearing silicon nitride obscured the actual wear data. This has also been a problem in prior studies with alumina and zirconia bearings. Considerable challenges still stand in the way of the optimal biomaterials choices that will result in reduced risk of failure while providing extended lifetimes. Thus important issues remain unsolved and call for innovative solutions. Searching for a more effective ‘wear-measurement’ remedy, we noted that abrasive slurries of bone cement (PMMA) used in contemporary simulator studies were effective in promoting adverse wear in polyethylene bearings. These investigations also revealed that PMMA debris did not damage CoCr heads. 2,3. , alumina heads. 4,5. or diffusion-hardened zirconia heads (ZrDH). 6. We can therefore speculate at this ISTA meeting of 2014 that future ceramic wear tests should incorporate PMMA slurries. Here a new hypothesis can be formulated, that PMMA particulates will provide a continual and beneficial removal of contaminating proteins from the ceramic surfaces (see Fig. 3) and thereby aid definition of low-wearing COC bearings such as Si. 3. N. 4. . The application of non-oxide