Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims. This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation. Methods. A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups. Results. The patients with OLT showed significantly increased dorsiflexion moment in the ankle joint compared with healthy subjects during 38.2% to 40.9% of the gait cycle, and increased eversion moment in the ankle joint compared with patients without OLT during 25.5% to 27.6% of the gait cycle. Compared with healthy subjects, the patients with OLT showed increased anterior force during 42% to 43% of the gait cycle, and maximal medial force (p = 0.005, ηp2 = 0.399). Conclusion. The patients with concomitant CAI and OLT exhibit increased dorsiflexion and eversion moment, as well as increased anterior and medial ankle joint reaction force during stair descent, compared with patients with CAI but without OLT and healthy subjects, respectively. Thus, a rehabilitative regimen targeting excessive ankle dorsiflexion and eversion moment may help to reduce ankle joint loading. Cite this article: Bone Joint Res 2024;13(12):716–724


Bone & Joint Research
Vol. 3, Issue 8 | Pages 241 - 245
1 Aug 2014
Kanamoto T Shiozaki Y Tanaka Y Yonetani Y Horibe S

Objectives

To evaluate the applicability of MRI for the quantitative assessment of anterior talofibular ligaments (ATFLs) in symptomatic chronic ankle instability (CAI).

Methods

Between 1997 and 2010, 39 patients with symptomatic CAI underwent surgical treatment (22 male, 17 female, mean age 25.4 years (15 to 40)). In all patients, the maximum diameters of the ATFLs were measured on pre-operative T2-weighted MR images in planes parallel to the path of the ATFL. They were classified into three groups based on a previously published method with modifications: ‘normal’, diameter = 1.0 - 3.2 mm; ‘thickened’, diameter > 3.2 mm; ‘thin or absent’, diameter < 1.0 mm. Stress radiography was performed with the maximum manual force in inversion under general anaesthesia immediately prior to surgery. In surgery, ATFLs were macroscopically divided into two categories: ‘thickened’, an obvious thickened ligament and ‘thin or absent’. The imaging results were compared with the macroscopic results that are considered to be of a gold standard.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 339 - 339
1 May 2010
Valderrabano V Ebneter L Leumann A von Tscharner V Hintermann B
Full Access

Introduction: Ankle sprains are among the most common injuries in sports and recreational activities. 10 to 40% of the acute ankle sprains lead to chronic ankle instability (CAI), which can be divided into its mechanical and its functional division. The clinical-orthopaedic diagnosis of mechanical ankle instability (MAI) has been well established, whereas the etiology of the functional ankle instability (FAI) is still not objectively allocatable. The aim of this study was to identify neuromuscular patterns in lower leg muscles to objectively describe the FAI. Methods: 15 patients suffering from unilateral CAI (mean age, 35.5 years) since 2.4 years (1–9 years) were examined. The patients were evaluated etiologically and clinically (VAS pain score, AOFAS Ankle Score, calf circumference, and SF-36). Electromyographic (EMG) measurements of surface EMG with determination of mean EMG frequency and intensity by wavelet transformation were taken synchronously with dynamic stabilometry measurements. Four lower leg muscles were detected: tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SO), and peroneus longus (PL) muscle. 15 healthy subjects were tested identically. Results: Patients showed higher stability indices, higher VAS score, and lower AOFAS Ankle Score. The mean EMG frequency was significantly lower for the PL (pathologic leg, 138.3 Hz; normal leg, 158.3 Hz, p< 0.001). Lower mean EMG intensity was found in the pathologic PL and GM. The mean EMG frequency of the TA was lower in the patient group, its intensity higher. Discusssion and conclusion: Patients suffering CAI demonstrate weakened stability and impaired life quality. Neuromuscular patterns of the GM, PL and TA lead evidently to an objective etiology of the functional ankle instability. EMG patterns of four lower leg muscles indicate chronic changes in muscle morphology, such as degradation of type-II muscle fibres or modified velocity of motor unit action potentials. Accurate prevention and rehabilitation may compensate a MAI with a sufficient functional potential of lower leg muscles. This may also avoid operative treatment of MAI. The present study evidences the etiology of the FAI with objective parameters and indicates chronic changes in muscle morphology within CAI-Patients


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 21 - 21
1 Mar 2010
Valderrabano V Ebneter L Leumann A von Tscharner V Hintermann B
Full Access

Purpose: Ankle sprains are among the most common injuries in sports and recreational activities. 10 to 40% of the acute ankle sprains lead to chronic ankle instability (CAI), which can be divided into its mechanical and its functional division. The clinical-orthopaedic diagnosis of mechanical ankle instability (MAI) has been well established, whereas the etiology of the functional ankle instability (FAI) is still not objectively allocatable. The aim of this study was to identify neuromuscular patterns in lower leg muscles to objectively describe the FAI. Method: 15 patients suffering from unilateral CAI (mean age, 35.5 years) since 2.4 years (1–9 years) were examined. The patients were evaluated etiologically and clinically (VAS pain score, AOFAS Ankle Score, calf circumference, and SF-36). Electromyographic (EMG) measurements of surface EMG with determination of mean EMG frequency and intensity by wavelet transformation were taken synchronously with dynamic stabilometry measurements. Four lower leg muscles were detected: tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SO), and peroneus longus (PL) muscle. 15 healthy subjects were tested identically. Results: Patients showed higher stability indices, higher VAS score, and lower AOFAS Ankle Score. The mean EMG frequency was significantly lower for the PL (pathologic leg, 138.3 Hz; normal leg, 158.3 Hz, p< 0.001). Lower mean EMG intensity was found in the pathologic PL and GM. The mean EMG frequency of the TA was lower in the patient group, its intensity higher. Conclusion: Patients suffering CAI demonstrate weakened stability and impaired life quality. Neuromuscular patterns of the GM, PL and TA lead evidently to an objective etiology of the functional ankle instability. EMG patterns of four lower leg muscles indicate chronic changes in muscle morphology, such as degradation of type-II muscle fibres or modified velocity of motor unit action potentials. Accurate prevention and rehabilitation may compensate a MAI with a sufficient functional potential of lower leg muscles. This may also avoid operative treatment of MAI. The present study evidences the etiology of the FAI with objective parameters and indicates chronic changes in muscle morphology within CAI-Patients


Bone & Joint 360
Vol. 12, Issue 1 | Pages 23 - 25
1 Feb 2023

The February 2023 Foot & Ankle Roundup360 looks at: Joint inflammatory response in ankle and pilon fractures; Tibiotalocalcaneal fusion with a custom cage; Topical application of tranexamic acid can reduce blood loss in calcaneal fractures; Risk factors for failure of total ankle arthroplasty; Pain catastrophizing: the same as pain forecasting?.


Bone & Joint 360
Vol. 13, Issue 6 | Pages 23 - 26
1 Dec 2024

The December 2024 Foot & Ankle Roundup360 looks at: Tibiotalar sector and lateral ankle instability; Isolated subtalar fusion and correction of progressive collapsing foot deformity; Diabetic control and postoperative complications following ankle fracture fixation; Are insoles of any benefit for plantar fasciitis?; Postoperative foot shape and patient-reported outcome following surgery for progressing collapsing foot deformity; Calcaneo-stop procedure for symptomatic flexible flatfoot in children.


Bone & Joint 360
Vol. 10, Issue 2 | Pages 29 - 33
1 Apr 2021


Bone & Joint 360
Vol. 10, Issue 1 | Pages 19 - 24
1 Feb 2021