Advertisement for orthosearch.org.uk
Results 1 - 20 of 1630
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 64 - 64
4 Apr 2023
Hartland A Islam R Teoh K Rashid M
Full Access

There remains much debate regarding the optimal method for surgical management of patients with long head of biceps pathology. The aim of this study was to compare the outcomes of tenotomy versus tenodesis. This systematic review and meta-analysis was registered on PROSPERO (ref: CRD42020198658). Electronic databases searched included EMBASE, Medline, PsycINFO, and Cochrane Library. Randomized controlled trials (RCTs) comparing tenotomy versus tenodesis were included. Risk of bias within studies was assessed using the Cochrane risk of bias v2.0 tool and the Jadad score. The primary outcome included patient reported functional outcome measures pooled using standardized mean difference (SMD) and a random effects model. Secondary outcome measures included pain (visual analogue scale VAS), rate of Popeye deformity, and operative time. 860 patients from 11 RCTs (426 tenotomy vs 434 tenodesis) were included in the meta-analysis. Pooled analysis of all PROMs data demonstrated comparable outcomes between tenotomy vs tenodesis (SMD 0.14, 95% CI −0.04 to 0.32; p=0.13). Sensitivity analysis comparing RCTs involving patients with and without an intact rotator cuff did not change the primary outcome. There was no significant difference for pain (VAS). Tenodesis resulted in a lower rate of Popeye deformity (OR 0.29, 95% CI 0.19 to 0.45, p < 0.00001). Tenotomy demonstrated a shorter operative time (MD 15.21, 95% CI 1.06 to 29.36, p < 0.00001). Aside from a lower rate of cosmetic deformity, tenodesis yielded no measurable significant benefit to tenotomy for addressing pathology in the long head of biceps. A large multi-centre clinical effectiveness randomised controlled trial is needed to provide clarity in this area


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 66 - 66
17 Nov 2023
Rajab A Ponsworno K Keehan R Ahmad R
Full Access

Abstract. Background. Post operative radiographs following total joint arthroplasty are requested as part of routine follow up in many institutions. These studies have a significant cost to the local departments, in terms of financial and clinic resources, however, previous research has suggested they may not alter the course of the patients treatment. The purpose of this study was to assess the significance of elective post operative radiographs on changes in management of patients who underwent total joint arthroplasty. Method. All patients who underwent total knee arthroplasty and total hip arthroplasty at a District General Hospital from 2019 to 2020 were included. Data was collected retrospectively from medical records and radiograph requests. Alterations to clinical management based on radiographic findings were reviewed in clinic letters. Results. A total of 227 Total joint arthroplasty were retrieved. With 111(49%) total hip arthroplasty and 116 (51%) total knee arthroplasty. 54 were excluded due to having no clinical follow up and 173 met inclusion criteria. 56 (32%) had their post operative elective radiograph, while 93 (53.8%) patients had none. There were no abnormalities detected from the elective radiographs and none of the patients returned to the theatre. 24 patients (13%) presented with symptoms and had non-elective radiographs, 16 (67%) did not have any interventions and 8 (4.6%) required intervention and were taken to theatre. Discussion: Not performing these radiographs saves time, cost, and prevents unnecessary radiation exposure. In our institution, a 2-view joint radiograph costs £29 and takes roughly 15 minutes. This does not include indirect costs of additional clinic time and patient waiting time. In the larger context, the cost associated with elective radiographs is significant and our data suggests that routine post-operative radiographs are not beneficial as part of standard post-operative protocol for asymptomatic patients. However, performing imaging remains beneficial for patients who re-present with symptoms. Conclusion. Routine elective post-operative joint radiographs did not detect any true abnormalities. Information from elective radiographs has no clinical significance and did not change management. Therefore, this study recommends that there is no rationale requesting elective post-operative joint radiographs. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The ankle radiograph is a commonly requested investigation as the ankle joint is commonly injured. Each radiograph exposes 0.01 mSv of radiation to the patient that is equivalent to 1.5 days of natural background radiation [1]. The aim of the clinical audit was to use the Ottawa Ankle Rule to attempt to reduce the number of ankle radiographs taken in patients with acute ankle injuries and hence reduce the dose of ionising radiation the patient receives. A retrospective audit was undertaken. 123 ankle radiograph requests and radiographs taken between May and July 2018 were evaluated. Each ankle radiograph request including patient history and clinical examination was graded against the Ottawa Ankle Rule. The rule states that 1 point(s) indicates radiograph series; (1) malleolar and/or midfoot pain; (1) tenderness over the posterior 6cm or tip of the lateral or medial malleolus (ankle); (1) tenderness over the navicular or the base of the fifth metatarsal (foot); (1) unable to take four steps both immediately and in the emergency department [2]. Patients who score 0 do not need radiograph series. Each radiograph was reviewed if a fracture was present or not. The clinical audit identified 14 true positives where the Ottawa Ankle Rule scored 1 and the patient had an ankle fracture, and 2 false negatives (sensitivity 88%). There were 81 false positives, and 23 true negatives (specificity 22%). Therefore, a total of 23/123 ankle radiographs were unnecessary which is equivalent to 34.5 days of background radiation. The negative predictive value of the Ottawa Ankle Rule in this audit was 92%. The low rate of Ottawa rule utilisation may unnecessarily cause patient harm that should be addressed. An educational intervention with physicians combined with integration of the Ottawa rule scoring in ankle radiograph requests is planned with re-audit in 6 months


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 97 - 97
2 Jan 2024
Camera A Biggi S Capuzzo A Cattaneo G Tedino R Bolognesi G
Full Access

Elective orthopaedic procedures, and particularly total hip arthroplasty (THA), in octogenarians and nonagenarians patients are burdened of several implications. Besides the comorbidities and the anesthesiological issues, legal and ethical implications are present. Some literature data show the clinical improvement of THA in elderly patient but the psychological aspects are not yet evaluated. Aim of this study is to evaluate the clinical aspects and the psychological impact in daily living in octogenarians and nonagenarians patients addressing THA. We conducted a retrospective evaluation of 81 THA in 81 patients of age more than 85 years with a minimum follow-up of 6 months. Clinical aspects were evaluated using the Hip disability and Osteoarthritis Outcome Score (HOOS). The psychological issues were evaluated with the Short Form 12 (SF-12) using both the Physical Component Summary (PCS) and the Mental Component Summary (MCS). From the starter cohort of 81 patients, 8 patients were died for causes unrelated to surgery, 13 were lost to follow-up, 1 patient was revised for periprosthetic fracture; 59 patients composed the final cohort. Mean HOOS rased from 18,07 ± 17,81 to 92,36 ± 5,74 with statistically significant distribution both in the global score than in all of the different subscales. The PCS raised from 26,81 ± 10,81 to 51,86 ± 4,45 and The MCS raised from 34,84 ± 10,81 to 56,70 ± 5,04, but none of them showed a statistically significant distribution. THA in octogenarians and nonagenarians patients could be a safe procedure with positive results for clinical and psychological aspects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 70 - 70
17 Apr 2023
Flood M Gette P Cabri J Grimm B
Full Access

For clinical movement analysis, optical marker-based motion capture is the gold standard. With the advancement of AI-driven computer vision, markerless motion capture (MMC) has emerged. Validity against the marker-based standard has only been examined for lightly-dressed subjects as required for marker placement. This pilot study investigates how different clothing affects the measurement of typical gait metrics. Gait tests at self-selected speed (4 km/h) were performed on a treadmill (Motek Grail), captured by 9 cameras (Qualisys Miqus, 720p, f=100Hz) and analyzed by a leading MMC application (Theia, Canada). A healthy subject (female, h=164cm, m=54kg) donned clothes between trials starting from lightly dressed (LD: bicycle tight, short-sleeved shirt), adding a short skirt (SS: hip occlusion) or a midi-skirt (MS: partial knee occlusion) or street wear (SW: jeans covering ankle, long-sleeved blouse), the lattern combined with a short jacket (SWJ) or a long coat (SWC). Gait parameters (mean±SD, t=10s) calculated (left leg, mid-stance) were ankle pronation (AP-M), knee flexion (KF-M), pelvic obliquity (PO-M) and trunk lateral lean (TL-M) representing clinically common metrics, different joints and anatomic planes. Four repetitions of the base style (LD) were compared to states of increased garment coverage using the t-test (Bonferroni correction). For most gait metrics, differences between the light dress (LD) and various clothing styles were absent (p>0.0175), small (< 2SD) or below the minimal clinically important differences (MCID). For instance, KF-M was for LD=10.5°±1.7 versus MD=12.0°±0.5 (p=0.07) despite partial knee cover. AP-M measured for LD=5.2°±0.6 versus SW=4.1°±0.7 (p<0.01) despite ankle cover-up. The difference for KF-M between LD=10.5°±1.7 versus SWL=6.0°±0.9, SW and SWJ (7.6°±1.5, p<0.01) indicates more intra-subject gait variability than clothing effect. This study suggests that typical clothings styles only have a small clinically possibly negligible effect on common gait parameters measured with MMC. Thus, patients may not need to change clothes or be instructed to wear specific garments. In addition to avoiding marker placement, this further increases speed, ease and economy of clinical gait analysis with MMC facilitating high volume or routine application


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 22 - 22
2 Jan 2024
Muller S
Full Access

Tendons mainly consist of collagen in order to withstand high tensile forces. Compared to other, high turnover tissues, cellularity and vascularity in tendons are low. Thus, the natural healing process of tendons takes long and can be problematic. In case of injury to the enthesis, the special transition from tendon over cartilage to bone is replaced by a fibrous scar tissue, which remains an unsolved problem in rotator cuff repair. To improve tendon healing, many different approaches have been described using scaffolds, stem cells, cytokines, blood products, gene therapy and others. Despite promising in vitro and in vivo results, translation to patient care is challenging. In clinics however, tendon auto- or allografts remain still first choice to augment tendon healing if needed. Therefore, it is important to understand natural tendon properties and natural tendon healing first. Like in other tissues, senescence of tenocytes seems to play an important role for tendon degeneration which is interestingly not age depended. Our in vivo healing studies have shown improved and accelerated healing by adding collagen type I, which is now used in clinics, for example for augmentation of rotator cuff repair. Certain cytokines, cells and scaffolds may further improve tendon healing but are not yet used routinely, mainly due to missing clinical data, regulatory issues and costs. In conclusion, the correct diagnosis and correct first line treatment of tendon injuries are important to avoid the necessity to biologically augment tendon healing. However, strategies to improve and accelerate tendon healing are still desirable. New treatment opportunities may arise with further advances in tendon engineering in the future


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 82 - 82
14 Nov 2024
Kühl J Grocholl J Seekamp A Klüter T Fuchs S
Full Access

Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the design process for patient-specific implants with critical-sized tibia defects. Methods. Two clinical cases of patients with critical tibia defects (size 63×20×21 mm and 50×24×17 mm) were chosen. Brainlab software was used for segmentation of CT data generating 3D models of the defects. The implant construction involves multiple stages. Initially, the outer shell is precisely defined. Subsequently, the specified volume is populated with internal structures using Voronoi, Gyroid, and NaCl crystal structures. Variation in pore size (1.6 mm and 1.0 mm) was accomplished by adjusting scaffold size and material thickness. Results. An algorithmic design process in Rhino and Grasshopper was successfully applied to generate model implants for the tibia from Ct data. By integrating a precise mesh into an outer shell, a scaffold with controlled porosity was designed. In terms of the internal design, both Voronoi and Gyroid form macroscopically homogeneous properties, while NaCl, exhibits irregularities in density and consequently, in the strength of the structure. Data implied that Voronoi and Gyroid structures adapt more precisely to complex and irregular outer shapes of the implants. Conclusion. In proof-of-principle studies customized tibia implants were successfully generated and printed as model implants based on resin. Further studies will include more patient data sets to refine the workflows and digital tools for a broader spectrum of bone defects. The algorithm-based design might offer a tremendous potential in terms of an automated design process for 3D printed implants which is essential for clinical application


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 85 - 85
2 Jan 2024
Zwingenberger S
Full Access

Spinal diseases such as unstable fractures, infections, primary or secondary tumors or deformities require surgical stabilization with implants. The long-term success of this treatment is only ensured by a solid bony fusion. The size of the bony defect, the often poor bone quality and metabolic diseases increase the risk of non-union and make the case a great burden for the patient and a challenge for the surgeon. The goal of spinal fusion can only be achieved if the implants used offer sufficient mechanical stability and the local biological regeneration potential is large enough to form sufficient bone. The lecture will present challenging clinical cases. In addition, implant materials and new surgical techniques are discussed. Local therapeutic effects are achieved through the release of osteopromotive or anti-resorbtive drugs, growth factors and antibiotics. By influencing biological pathways, basic orthopedic research has strong potential to further positively change future spinal surgery


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 131 - 131
2 Jan 2024
Vadalà G
Full Access

Infections are among the most diffused complications of the implantation of medical devices. In orthopedics, they pose severe societal and economic burden and interfere with the capability of the implants to integrate in the host bone, significantly increasing failure risk. Infection is particularly severe in the case of comorbidities and especially bone tumors, since oncologic patients are fragile, have higher infection rate and impaired osteoregenerative capabilities. For this reason, prevention of infection is to be preferred over treatment. This is even more important in the case of spine surgery, since spine is among the main site for tumor metastases and because incidence of post operative surgical-site infections is significant (up to 15-20%) and surgical options are limited by the need of avoiding damaging the spinal cord. Functionalization of the implant surfaces, so as to address infection and, possibly, co- adjuvate anti-tumor treatments, appears as a breakthrough innovation. Unmet clinical needs in infection and tumors is presented, with a specific focus on the spine, then, new perspectives are highlighted for their treatment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 7 - 7
4 Apr 2023
Bottomley J Al-Dadah O
Full Access

Meniscal tears are the most common injury in the knee, affecting 66/100,000 people/year. Surgical treatment includes arthroscopic meniscectomy or meniscal repair. Little is known regarding medium-term outcomes following these procedures in isolated meniscal tears. This study aims to quantitatively evaluate patients with meniscal tears, and those who have undergone meniscectomy and meniscal repair using validated patient reported outcome measures (PROMs), further exploring factors which affect surgical outcomes. This observational study screened 334 patients who underwent arthroscopic surgery at South Tyneside Hospital since August 2013. 134 patients with isolated meniscal tears were invited to complete postal PROMs. A combination of patient notes and radiological imaging was used to collect information of interest including age, gender, knee-laterality, injured meniscus, tear pattern, procedure performed, complications, and associated injuries. A total of 115 patients (pre-operative patients with current meniscal tear (n=36), meniscectomy (n=63), meniscal repair (n=16)) were included in the analysis with 96% successful PROM completion. Both meniscectomy and meniscal repairs (mean 55-months follow-up) showed better outcomes than pre-operative patients with meniscal tears. Meniscal repairs demonstrated superior outcomes across all PROMs when compared to meniscectomy, with a greater mean overall KOOS score of 17.2 (p=0.009). Factors including higher pre-operative Kellgren-Lawrence Grade, pre-operative articular cartilage lesions and bilateral meniscectomies were shown to negatively influence outcomes. Both meniscectomy and meniscal repair maintain clinical benefit at mean 55-months follow-up, affirming their use for treatment of meniscal tears. When feasible, meniscal repair should be performed preferentially over meniscectomy in isolated meniscal tears. Identified predictive factors allow adequate treatment stratification in specific patient groups


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 9 - 9
1 Dec 2022
Olivotto E Mariotti F Castagnini F Favero M Oliviero F Evangelista A Ramonda R Grigolo B Tassinari E Traina F
Full Access

Hip Osteoarthritis (HOA) is the most common joint disorder and a major cause of disability in the adult population, leading to total hip replacement (THR). Recently, evidence has mounted for a prominent etiologic role of femoroacetabular impingement (FAI) in the development of early OA in the non-dysplastic hip. FAI is a pathological mechanical process, caused by abnormalities of the acetabulum and/or femur leading to damage the soft tissue structures. FAI can determine chondro-labral damage and groin pain in young adults and can accelerate HOA progression in middle-aged adults. The aim of the study was to determine if the presence of calcium crystal in synovial fluid (SF) at the time of FAI surgery affects the clinical outcomes to be used as diagnostic and predictive biomarker. 49 patients with FAI undergoing arthroscopy were enrolled after providing informed consent; 37 SFs were collected by arthrocentesis at the time of surgery and 35 analyzed (66% males), median age 35 years with standard deviation (SD) 9.7 and body mass index (BMI) 23.4 kg/m. 2. ; e SD 3. At the time of surgery, chondral pathology using the Outerbridge score, labral pathology and macroscopic synovial pathology based on direct arthroscopic visualization were evaluated. Physical examination and clinical assessment using the Hip disability & Osteoarthritis Outcome Score (HOOS) were performed at the time of surgery and at 6 months of follow up. As positive controls of OA signs, SF samples were also collected from cohort of 15 patients with HOA undergoing THR and 12 were analysed. 45% FAI patients showed CAM deformity; 88% presented labral lesion or instability and 68% radiographic labral calcification. 4 patients out of 35 showed moderate radiographic signs of OA (Kellegren-Lawrence score = 3). Pre-operative HOOS median value was 61.3% (68.10-40.03) with interquartile range (IQR) of 75-25% and post-operative HOOS median value 90% with IQR 93.8-80.60. In both FAI and OA patients the calcium crystal level in SFs negatively correlated with glycosaminoglycan (component of the extracellular matrix) released, which is a marker of cartilage damage (Spearman rho=-0.601, p<0.001). In FAI patients a worst articular function after surgery, measured with the HOOS questionnaire, was associated with both acetabular and femoral chondropathy and degenerative labral lesion. Moreover, radiographic labral calcification was also significantly associated with pain, worst articular function and labral lesion. Calcium crystal level in SFs was associated with labral lesions and OA signs. We concluded that the levels of calcium crystals in FAI patients are correlated with joint damage, OA signs and worst post-operative outcome. The presence of calcium crystals in SF of FAI patients might be a potential new biomarker that might help clinicians to make an early diagnosis, evaluate disease progression and monitor treatment response


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 15 - 15
17 Apr 2023
Inglis B Inacio J Dailey H
Full Access

Virtual mechanical testing is a method for measuring bone healing using finite element models built from computed tomography (CT) scans. Previously, we validated a dual-zone material model for ovine fracture callus that differentiates between mineralized woven bone and soft tissue based on radiodensity. 1. The objective of this study was to translate the dual-zone material model from sheep to two important clinical scenarios: human tibial fractures in early-stage healing and late-stage nonunions. CT scans for N = 19 tibial shaft fractures were obtained prospectively at 12 weeks post-op. A second group of N = 33 tibial nonunions with CT scans were retrospectively identified. The modeling techniques were based on our published method. 2. The dual-zone material model was implemented for humans by performing a cutoff sweep for both the 12-week and nonunion groups. Virtual torsional rigidity (VTR) was calculated as VTR = ML/φ [N-m. 2. /°], where M is the moment reaction, L is the diaphyseal segment length, and φ is the angle of twist. As the soft tissue cutoff was increased, the rigidity of the clinical fractures decreased and soft tissue located within the fracture gaps produced higher strains that are not predicted without the dual zone approach. The structural integrity of the nonunions varied, ranging from very low rigidities in atrophic cases to very high rigidities in highly calcified hypertrophic cases, even with dual-zone material modeling. Human fracture calluses are heterogeneous, comprising of woven bone and interstitial soft tissue. Use of a dual-zone callus material model may be instrumental in identifying delayed unions during early healing when callus formation is minimal and/or predominantly fibrous with little mineralization. ACKNOWLEDGEMENTS:. This work was supported by the National Science Foundation (NSF) grant CMMI-1943287


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 83 - 83
2 Jan 2024
Segarra-Queralt M Galofré M Tio L Monfort J Monllau J Piella G Noailly J
Full Access

Knee osteoarthritis (KOA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in KOA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n=51) with Kellgren-Lawrence grade 2–3 KOA through Support Vector Machine (SVM) and a regulation network model (RNM). Clinical descriptors (i.e., pain catastrophism (CA); depression (DE); functionality (FU); joint pain (JP); rigidity (RI); sensitization (SE); synovitis (SY)) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the Osteoarthritis Initiative, and the mean accuracy is 0.97. For our cohort, the data used as SVM inputs are KOA descriptors, synovial fluid (SL) proteomic measurements (n=25), and transcription factors (TF) activation obtained from RNM [2] stimulated with the SL measurements. The relative weights after classification reflect input importance. The performance of each classifier is evaluated through AUC-ROC analysis. The best classifier with clinical data is CA (AUC = 0.9), highly influenced by FU and SE, suggesting that kinesophobia is involved in pain perception. With SL input, leptin strongly influences every classifier, suggesting the importance of low-grade inflammation. When TF are used, the mean AUC is limited to 0.608, which can be related to the pleomorphic behaviour of osteoarthritic chondrocytes. Nevertheless, FU has an AUC of 0.7 with strong importance of FOXO downregulation. Though larger and longitudinal cohorts are needed, this unique combination of SVM and RNM shall help to map objectively KOA descriptors. Acknowledgements: Catalan & Spanish governments 2020FI_b00680; STRATO-PID2021126469ob-C21-2, European Commission (MSCA-TN-ETN-2020-Disc4All-955735, ERC-2021-CoG-O-Health-101044828). ICREA Academia


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 1 - 1
2 Jan 2024
Evans C
Full Access

Intra-articular injection is a common way to deliver biologics to joints, but their effectiveness is limited by rapid clearance from the joint space. This barrier can be overcome by genetically modifying cells within the joint such that they produce anti-arthritic gene products endogenously, thereby achieving sustained, therapeutic, intra-articular concentrations of the transgene products without re-dosing. A variety of non-viral and viral vectors have been subjected to preclinical testing to evaluate their suitability for delivering genes to joints. The first transfer of a gene to a human joint used an ex vivo protocol involving retrovirally transduced, autologous, synovial fibroblasts. Recent advances in vector technology allow in vivo delivery using adeno-associated virus (AAV). We have developed an AAV vector encoding the interleukin-1 receptor antagonist (AAV.IL-1Ra) for injection into joints with osteoarthritis (OA). It showed efficacy and safety in equine and rat models of OA, leading to a recently-completed, investigator-initiated, Phase I, dose-escalation clinical trial in 9 subjects with mid-stage OA of the knee (. ClinicalTrials.gov. Identifier: NCT02790723). Three cohorts of three subjects with mild to moderate OA in the index knee were injected intra-articularly under ultrasound guidance with a low (10e11 viral genomes) medium (10e12 viral genomes) or high (10e13 viral genomes) dose of AAV.IL-1Ra and followed for one year. The data confirm safety, with evidence of sustained intra-articular expression of IL-1Ra and a clinical response in certain subjects. Funding for a subsequent Phase Ib trial involving 50 subjects (. ClinicalTrials.gov. Identifier: NCT05835895), expected to start later this year, has been acquired. Progress in this area has stimulated commercial activity and there are now at least seven different companies developing gene therapies for OA and a number of clinical trials are in progress. Acknowledgement: Clinical trial funded by US Department of Defense Clinical Trial Award W81XWH-16-1-0540


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 59 - 59
4 Apr 2023
MacLeod A Roberts S Mandalia V Gill H
Full Access

Conventional proximal tibial osteotomy is a widely successful joint-preserving treatment for osteoarthritis; however, conventional procedures do not adequately control the posterior tibial slope (PTS). Alterations to PTS can affect knee instability, ligament tensioning, knee kinematics, muscle and joint contact forces as well as range of motion. This study primarily aimed to provide a comprehensive investigation of the variables influencing PTS during high tibial osteotomy using a 3D surgical simulation approach. Secondly, it aimed to provide a simple means of implementing the findings in future 3D pre-operative planning and /or clinically. The influence of two key variables: the gap opening angle and the hinge axis orientation on PTS was investigated using three independent approaches: (1) 3D computational simulation using CAD software to perform virtual osteotomy surgery and simulate the post-operative outcome. (2) Derivation of a closed-form mathematical solution using a generalised vector rotation approach (3) Clinical assessment of synthetically generated x-rays of osteoarthritis patients (n=28; REC reference: 17/HRA/0033, RD&E NHS, UK) for comparison against the theoretical/computational approaches. The results from the computational and analytical assessments agreed precisely. For three different opening angles (6°, 9° and 12°) and 7 different hinge axis orientations (from −30° to 30°), the results obtained were identical. A simple analytical solution for the change in PTS, ΔP. s,. based on the hinge axis angle, α, and the osteotomy opening angle, θ, was derived:. ΔP. s. =sin. -1. (sin α sin θ). The clinical assessment demonstrated that the absolute values of PTS, and changes resulting from various osteotomies, matched the results from the two relative prediction methods. This study has demonstrated that PTS is impacted by the hinge axis angle and the extent of the osteotomy opening angle and provided computational evidence and analytical formula for general use


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy. The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain). Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy. The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery. Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x10. 6. , G2a arm) and 16 the ‘low dose’ MSC (100x10. 6. , G2b arm). The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic. Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols. The clinical and biochemical results of the study, still under evaluation, are presented. * ORTHOUNION Horizon 2020 GA 733288


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 27 - 27
1 Dec 2022
Ghermandi R
Full Access

Spinal surgery deals with the treatment of different pathological conditions of the spine such as tumors, deformities, degenerative disease, infections and traumas. Research in the field of vertebral surgery can be divided into two main areas: 1) research lines transversal to the different branches; 2) specific research lines for the different branches. The transversal lines of research are represented by strategies for the reduction of complications, by the development of minimally invasive surgical techniques, by the development of surgical navigation systems and by the development of increasingly reliable systems for the control of intra-operative monitoring. Instead, specific lines of research are developed within the different branches. In the field of oncological pathology, the current research concerns the development of in vitro models for the study of metastases and research for the study of targeted treatment methods such as electrochemotherapy and mesenchymal stem cells for the treatment of aneurysmal bone cysts. Research in the field of spinal deformities is focused on the development of increasingly minimally invasive methods and systems which, combined with appropriate pharmacological treatments, help reduce trauma, stress and post-operative pain. Scaffolds based on blood clots are also being developed to promote vertebral fusion, a fundamental requirement for improving the outcome of vertebral arthrodesis performed for the treatment of degenerative disc disease. To improve the management and the medical and surgical treatment of vertebral infections, research has focused on the definition of multidisciplinary strategies aimed at identifying the best possible treatment path. Thus, flow-charts have been created which allow to manage the patient suffering from vertebral infection. In addition, dedicated silver-coated surgical instrumentation and bone substitutes have been developed that simultaneously guarantee mechanical stability and reduce the risk of further local infection. In the field of vertebral traumatology, the most recent research studies have focused on the development of methods for the biostimulation of the bone growth in order to obtain, when possible, healing without surgery. Methods have also been developed that allow the minimally invasive percutaneous treatment of fractures by means of vertebral augmentation with PMMA, or more recently with the use of silicone which from a biomechanical point of view has an elastic modulus more similar to that of bone. It is clear that scientific research has changed clinical practice both in terms of medical and surgical management of patients with spinal pathologies. The results obtained stimulate the basic research to achieve even more. For this reason, new lines of research have been undertaken which, in the oncology field, aim at developing increasingly specific therapies against target receptors. Research efforts are also being multiplied to achieve regeneration of the degenerated intervertebral disc and to develop implants with characteristics increasingly similar to those of bone in order to improve mechanical stability and durability over time. Photodynamic therapies are being developed for the treatment of infections in order to reduce the use of antibiotic therapies. Finally, innovative lines of research are being launched to treat and regenerate damaged nerve structures with the goal, still far from today, of making patients with spinal cord injuries to walk


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 16 - 16
14 Nov 2024
Mei J Pasoldt A Matalova E Graessel S
Full Access

Introduction. Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration, inflammation, and pain. Current treatments provide only symptomatic relief, necessitating novel molecular targets. The caspase family, known for its roles in apoptosis and inflammation regulation, may additionally influence crucial processes for cartilage homeostasis such as differentiation and proliferation. However, the specific roles of individual caspases in OA pathogenesis remain unclear. This study aims to investigate the involvement of the caspase family in OA and as potential targets for therapy, with a focus on caspase-1 and -8. Method. Chondrocytes from both healthy and OA donors were cultured in 2D and 3D culture models and stimulated with TNF-α or IL-1β. The expression and activation of caspase-1 and -8 was assessed using RT-PCR, ELISA. Transcriptome analysis of OA and healthy cartilage samples, along with Mendelian randomization (MR) analysis were conducted to explore the involvement of caspase family in OA and to assess its potential as therapeutic targets. Result. Higher expression levels of caspase-1, -8 were observed in OA cartilage compared to healthy cartilage. TNF-α stimulation increased their expression in both healthy and OA chondrocytes, while IL-1β had limited impact. Caspase-8 expression was causally associated with knee OA in MR analysis, suggesting a potential therapeutic target. The caspase-1 inhibitor VX-765 mildly reduced chondrocyte viability, with no significant effect in the presence of TNF-α. While the caspase-8 inhibitor Z-IETD-FMK exhibited slight enhancements in cell viability, these improvements were not statistically significant. Nevertheless, its effectiveness significantly increased in the presence of TNF-α. Conclusion. This study highlights the involvement of caspase-1 and caspase-8 in OA pathology, with caspase-8 emerging as a potential therapeutic target for knee OA treatment. Further investigation into the roles of caspase-1 and -8 in OA pathophysiology, including the efficacy and potential side effects of their corresponding inhibitors, is warranted. Acknowledgements. Funding Inter-Action/Inter-Excellence project (BTHA-JC-2022-36/LUABA22019)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 29 - 29
11 Apr 2023
Boljanovic D Razmjou H
Full Access

The purpose of the this survey study was twofold: 1) to examine different aspects of satisfaction with post-operative care in injured workers who have undergone rotator cuff surgery and 2) to examine the relationship between receiving a newly implemented summary report and the overall satisfaction with surgery and recovery. The clinical communication summary report was given to injured workers following their review assessment to share with the family doctor or other health care providers. The form indicated a need for further assessments or investigations and return to work recommendations. The study involved using a satisfaction survey that examined different aspects of follow-up visit and workers’ opinion about their understanding of the nature of surgery, their progress, clinical management, and usefulness of the newly implemented summery report. Eighty patients completed the questionnaire (mean age: 54 (8), 62(78%) males, of whom 26 (34%) had a rotator cuff decompression and 31 (40%) had a rotator cuff repair with 20 (26%) having both procedures and three missing data. There were no statistically significant relationships between the patient demographics (age, sex or type of surgery) and satisfaction. However, there was a significant correlation between how patients perceived the summary report in terms of helpfulness and the overall satisfaction with surgery (FTE<0.0004, p=0.001) and the satisfaction with recovery (FTE<0.0001, p=0.001). This may indicate that improvement in worker's understanding of their treatment recommendations and restrictions is associated with higher levels of overall satisfaction in this population. Our results indicate a positive linear relationship between expressing a high satisfaction and the helpfulness of the summary report. As part of improving care, adding a summary report may facilitate sharing information with the injured workers, their care providers and their workplace