Advertisement for orthosearch.org.uk
Results 1 - 20 of 23
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 145 - 145
1 Jul 2014
Kurtz S MacDonald D Higgs G Gilbert J Klein G Mont M Parvizi J Kraay M Rimnac C
Full Access

Summary Statement. Fretting and corrosion has been identified as a clinical problem in modular metal-on-metal THA, but remains poorly understood in modern THA devices with polyethylene bearings. This study investigates taper damage and if this damage is associated with polyethylene wear. Introduction. Degradation of modular head-neck tapers was raised as a concern in the 1990s (Gilbert 1993). The incidence of fretting and corrosion among modern, metal-on-polyethylene and ceramic-on-polyethylene THA systems with 36+ mm femoral heads remains poorly understood. Additionally, it is unknown whether metal debris from modular tapers could increase wear rates of highly crosslinked PE (HXLPE) liners. The purpose of this study was to characterise the severity of fretting and corrosion at head-neck modular interfaces in retrieved conventional and HXLPE THA systems and its effect on penetration rates. Patients & Methods. 386 CoCr alloy heads from 5 manufacturers were analyzed along with 166 stems (38 with ceramic femoral heads). Metal and ceramic components were cleaned and examined at the head taper and stem taper by two investigators. Scores ranging from 1 (mild) to 4 (severe) were assigned in accordance with the semi-quantitative method adapted from a previously published technique. Linear penetration of liners was measured using a calibrated digital micrometer (accuracy: 0.001 mm). Devices implanted less than 1 year were excluded from this analysis because in the short-term, creep dominates penetration of the head into the liner. Results. The majority of the components were revised for instability, infection, and loosening. Mild to severe taper damage (score ≥2) was found in 77% of head tapers and 52% of stem tapers. The extent of damage was correlated to implantation time at the head taper (p=0.0004) and at the stem taper (p=0.0004). Damage scores were statistically elevated on CoCr heads than the matched stems (mean score difference=0.5; p<0.0001) and the two metrics were positively correlated with each other (ρ=0.41). No difference was observed between stem taper damage and head material (CoCr, ceramic) (p=0.56), nor was a correlation found between taper damage and head size (p=0.85). The penetration rate across different formulations of HXLPE was not found to be significantly different (p=0.07), and therefore grouped together for further analysis. Within this cohort, penetration rate was not found to be associated with head size (p=0.08) though a negative correlation with implantation time was noted (ρ=−0.35). When analyzed along with taper damage scores, a correlation was not observed between head taper damage scores and HXLPE penetration rates (p=0.51). Discussion. The results of this study do not support the hypothesis that 36+ mm ceramic or CoCr femoral heads articulating on HXLPE liners are associated with increased risk of corrosion among HXLPE liners when compared with smaller diameter heads. A limitation of this study is the semi-quantitative scoring technique, heterogeneity of the retrieval collection and short implantation time of the larger diameter heads. Because corrosion may increase over time in vivo, longer-term follow-up, coupled with quantitative taper wear measurement, will better assess the natural progression of taper degradation in modern THA bearings


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 6 - 6
4 Apr 2023
Jamieson S Mawdesley A Hyde P Kirby J Tyson-Capper A
Full Access

Total hip replacement (THR) is indicated for patients with osteoarthritis where conservative treatment has failed. Metal alloys used in THR implants such as cobalt-chromium (CoCr) have been known to cause pro-inflammatory reactions in patients, therefore leading to the need for costly revision surgery. This study therefore aimed to investigate the role of TLR4 in the activation of a human osteoblast model in response to CoCr particles in vitro. Human osteoblasts (MG-63 cell line) were seeded at a density of 100,000 cells and treated with 0.5, 5, 50mm3 CoCr particles per cell for 24-hours. Trypan blue and the XTT Cell Proliferation Kit II were then used in conjunction with the cells to assess CoCr-induced cytotoxicity. Cells were pre-treated with a commercially available TLR4-specific small molecule inhibitor (CLI-095) for 6 hours. Untreated cells were used as a negative control and lipopolysaccharide (LPS) was used as a positive control. Following treatment the cell supernatant was collected and used for enzyme-linked immunosorbant assay (ELISA) to measure the secretion of interleukin-8 (IL-8), CXCL10, and interleukin-6 (IL-6). Trypan blue and XTT analysis showed that there was no significant changes to cell viability or proliferation at any dose used of CoCr after 24 hours. There was a significant increase in protein secretion of IL-8 (p<0.001), CXCL10 (p<0.001), and IL-6 (p<0.001) in the cells which received the highest dosage of CoCr. This pro-inflammatory secretory response was ameliorated by TLR4 blockade (p<0.001). CoCr particles are not cytotoxic to osteoblasts but they do induce pro-inflammatory changes as characterised by increased secretion of chemokines IL-8, CXCL10, and IL-6. These responses occur via a TLR4-mediated pathway and upon inhibition they can be effectively ameliorated. This is particularly important as TLR4 could be a potential target for pharmacological intervention used in patients experiencing immunological reactions to metal implant debris


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 10 - 10
1 Nov 2021
Jamieson S Tyson-Capper A Hyde P Kirby J
Full Access

Introduction and Objective. Total joint replacement (TJR) is indicated for patients with end-stage osteoarthritis (OA) where conservative treatment has failed. Approximately 1.3 million primary hip replacement surgeries have been recorded in the United Kingdom since 2003 and this number is set to rise due to an increase in obesity as well as an ageing population. Total hip replacement (THR) has a survival rate of 85% at 20 years; the most common reason for failure is aseptic loosening which often occurs secondary to osteolysis caused by immune-mediated inflammation responses to wear debris generated from the materials used in the THR implant. Therefore, by understanding the biological steps by which biomaterials cause immune-mediated reactions it should be possible to prevent them in the future thereby reducing the number of costly revision surgeries required. Materials and Methods. The human osteoblast-like cell line (MG-63) was seeded at a density of 100,000 cell per well of a 6-well plate and treated with and increasing doses (0.5, 5, and 50mm. 3. per cell) of cobalt-chromium (CoCr) particles generated on a six-station pin-on-plate wear generator or commercially available ceramic oxide nanopowders (Al. 2. O. 3. and ZrO. 2. ) for 24 hours. TNF-alpha was used as a positive control and untreated cells as a negative control. Cells were then analysed by transmission electron microscopy (TEM) to determine whether the osteoblasts were capable of phagocytosing these biomaterials. MG-63 cells were used in conjunction with trypan blue and the XTT Cell Proliferation II Kit to assess cytotoxicity of the biomaterials investigated. Cells supernatants were also collected and analysed by enzyme-linked immunosorbant assay (ELISA) to investigate changes in pro-inflammatory protein secretion. Protein extracted from lysed cells was used for western blotting analysis to investigate RANKL protein expression to determine changes to osteolytic activation. Lysed cells were also used for RNA extraction and subsequent cDNA synthesis for real-time quantitative polymerase chain reaction (RT-qPCR) in order to assess changes to pro-inflammatory gene expression. Results. There was no significant change to cellular viability or proliferation in the osteoblasts treated with CoCr, Al. 2. O. 3. or ZrO. 2. when compared to the untreated negative control. TEM images showed clear and distinct intracellular vesicles within the cell cytoplasm which contained CoCr, Al. 2. O. 3. and ZrO. 2. RANKL expression increased at 5 and 50mm. 3. per cell CoCr and 50mm. 3. per cell Al. 2. O. 3. and ZrO. 2. Pro-inflammatory protein secretion of CXCL10, IL-8, and IL-6 all significantly increased at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Similarly to the protein secretion, CXCL10, IL-8, and IL-6 gene expression was significantly upregulated at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Conclusions. Increased in vitro RANKL expression in response to CoCr, Al. 2. O. 3. , and ZrO. 2. may result in disruption of bone metabolism and lead to osteolysis which can contribute to aseptic loosening in vivo. Significant increases in IL-6 are particularly important because as well as being a pro-inflammatory cytokine, IL-6 is also secreted by osteoblasts in order to stimulate mature osteoclast formation to mediate bone breakdown. CXCL10 and IL-8 are chemotactic cytokines and increased secretion in response to implant biomaterials can contribute to ongoing pro-inflammatory responses through the recruitment of monocytes and neutrophils respectively. This is interesting as in vivo data demonstrates increased cellular infiltrate in patients experiencing responses to implant materials. Overall, these findings show clear immune activation as well as altered metabolism of MG-63 osteoblast cells in response to implant wear debris which is in agreement with in vivo clinical reports


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced TKA design. Cite this article: A. Cerquiglini, J. Henckel, H. Hothi, P. Allen, J. Lewis, A. Eskelinen, J. Skinner, M. T. Hirschmann, A. J. Hart. Analysis of the Attune tibial tray backside: A comparative retrieval study. Bone Joint Res 2019;8:136–145. DOI: 10.1302/2046-3758.83.BJJ-2018-0102.R2


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 60 - 60
17 Nov 2023
Diaz RL Williams S Jimenez-Cruz D Board T
Full Access

Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip simulator. METHODS. Experimental design. HA tests were conducted using porcine acetabula and CoCr femoral heads. Five groups (n=4) were included: a control group comprising natural tissue and four HA groups where the acetabula were paired with metal heads to allow radial clearance (RC) classed as small (RC<0.6mm), large (2mm<RC<4mm), extra-large (4mm<RC), and oversized (RC<−0.6mm). Tests were carried out in an anatomical hip simulator that reproduced a simplified twin peak gait cycle, adapted for porcine hip joints, from the ISO 14242 standard for wear of THR prostheses (peak load of 900N). The test length was 6 hours, with photogrammetry taken at 1-hour intervals. Ringers solution was used as a lubricant. RESULTS. No changes were observed in the control group. However, cartilage surface changes were observed in all hemi-arthroplasty groups. Discolouration on the cartilage surface was noticeable at the posterior-superior part of the acetabulum after 1-hour (extra-large and oversized groups). Damage severity and location were characteristic of each clearance group. Of all the groups, the oversized group showed more significant damage. No labrum separation was seen after the simulation. CONCLUSIONS. These results are relevant to understand the effect of femoral head clearance on cartilage damage risk after HA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 5 - 5
1 Mar 2021
Zais IE Pavan M Sammali S Chisari E
Full Access

Abstract. Objective. The aim of our systematic review was to report the latest evidence on the effects of CoCr particles on local soft tissue with a focus on its clinical relevance. Methods. PubMed, Embase, and Cochrane Library databases were screened to perform an extensive review. Inclusion criteria were studies of any level of evidence published in peer-reviewed journals reporting clinical and preclinical results written in English. Relative data were extracted and critically analyzed. PRISMA guidelines were applied, and the risk of bias was assessed, as was the methodological quality of the included studies. Results. 30 studies were included after applying the inclusion and exclusion criteria. Of these, 24 were preclinical studies (18 in vitro human studies, 6 animal modal studies, including 3 in vitro and 3 in vivo), 5 were clinical studies and 1 was previous review on similar topic. The presence of metal ions causes cell damage by reducing cell viability, inducing DNA damage, and triggering the secretion of cytokines. Mechanisms of apoptosis, autophagy and necrosis are responsible for the inflammatory reaction observed in ALTR. Conclusion. The available literature on the effects of CoCr particles released from MoM implants shows that metal debris can cause damage to skeletal muscle, the capsule, and provoke osteolysis and inflammation. Therefore, the cytotoxic and genotoxic damages, as well as the interaction with the immune system, affect the success of the arthroplasty and lead to a higher rate of revision surgeries. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 91 - 91
1 Apr 2017
Lerf R Reimelt I Dallmann F Delfosse D
Full Access

Background. When reversing the hard-soft articulation in inverse shoulder replacement, i.e. hard inlay and soft glenosphere, the tribological behaviour of such a pairing has to be tested thoroughly. Therefore, two hard materials for the inlay, CoCr alloy and alumina toughened zirconia ceramic (ATZ) articulating on two soft materials, conventional UHMWPE and vitamin E stabilised, highly cross-linked PE (E-XLPE) were tested. Methods. The simulator tests were performed analogue to standardised gravimetric wear tests for hip prosthesis (ISO 14242-1) with load and motion curves adapted to the shoulder. The test parameters differing from the standard were the maximum force (1.0 kN) and the range of motion. A servo-hydraulic six station joint simulator (EndoLab, Rosenheim) was used to run the tests up to 5 times 106 cycles with diluted calf serum at 37° C as lubricant. Results. The wear rates measured in the simulator when the CoCr alloy inlay articulated on UHMWPE and E-XLPE were respectively 32.50 +/− 3.48 mg/Mcycle and 10.65 +/− 2.36 mg/Mcycle. In comparison, when the ATZ inlay articulated on UHMWPE and E-XLPE the wear rates were 20.34 +/− 1.14 mg/Mcycle and 5.99 +/− 0.79 mg/Mcycle respectively. Conclusions. The simulator wear rate of the standard articulation CoCr – UHMWPE is similar to that found in the corresponding pairing for hip endoprosthesis. Replacing UHMWPE by E-XLPE, the wear rate is reduced to about 1/3 for both hard counterparts, CoCr and ZTA, respectively. Replacing the CoCr inlay by a part made from ZTA lowers wear by about 37 % in articulation against UHMWPE and about 44 % against E-XLPE. The lowest wear rate, with a reduction of about 80 % compared to the standard CoCr – UHMWPE, exhibits the pairing of both advanced materials, ZTA – E-XLPE. However, long-term clinical follow-up will confirm if this in-vitro wear reduction leads to longer in-vivo survival. Level of evidence. Laboratory test on sample implants. Study financed by Mathys Orthopaedie GmbH


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 83 - 83
1 Nov 2018
Paulus AC Ebinger K Haßelt S Kretzer JP Bader R Utzschneider S
Full Access

The biological reaction in metallosis and pseudotumor generation after metal on metal total hip arthroplasty or corroding metal implants remains unsettled. Clinically, still lethal cases appear with massive bone loss and metal ions are suspected to be responsible for this inflammatory reaction, solid metal wear particles instead are usually not observed in the common literature. The aim of this study was to compare the biological reactions of metal ions and metal wear particles in a murine in vivo model. Metal ions (CoCr), metal particles (CoCr), polyethylene particles (UHMWPE) and phosphate buffered saline (PBS) were injected into the left knee joint of female BALB/c mice. 7 days after injection, the microcirculation was observed using intravital fluorescence microscopy, followed by euthanasia of the animals. After the assessment of the knee diameter, the knees underwent histological evaluations of the synovial layer. Throughout all recorded data, CoCr particles caused higher inflammatory reactions compared to metal ions and UHMWPE particles. The mice treated with the solid particles showed enlarged knee diameters, more intensive leukocyte–endothelial cell interactions and an elevated functional capillary density. Pseudotumor-like tissue formations in the synovial layer of the mice were only seen after the exposition to solid CoCr particles. Even if the focus of several national guidelines concerning metallosis and pseudotumor generation is on metal ions, the present data reveal that solid CoCr particles have the strongest inflammatory activity compared with metal ions and UHMWPE particles in vivo


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 35 - 35
1 Oct 2016
Asif I Williams S Fisher J Al-Hajjar M Anderson J Tipper J
Full Access

Wear particles produced by alumina ceramic-on-ceramic (CoC) bearings cause a minimal immunological response with low cytotoxicity and inflammatory potential. 1, 2. However, more comprehensive immunological studies are yet to be completed for the composite CoC (zirconia-toughened, platelet reinforced alumina) hip replacements due to difficulties in isolating the very low volume of clinically relevant wear debris generated by such materials in vitro. The aim of this study was to compare the cytotoxic effects of clinically relevant cobalt chromium (CoCr) nano-particles with commercial composite ceramic particles. Composite ceramic particles (commercial BIOLOX® delta powder) were obtained from CeramTec, Germany and clinically relevant CoCr wear particles were generated using a six station pin-on-plate wear simulator. L929 fibroblast cells were cultured with 50µm. 3. of CoCr wear debris or composite ceramic particles at low to high volumes ranging from 500µm. 3. –0.5µm. 3. per cell and the cyctotoxic effects of the particles were assessed over a period of 6 days using the ATP-Lite™ cell viability assay. The composite ceramic particles were bimodal in size (0.1–2µm & 30–100nm) and showed mild cytotoxic effects when compared with equivalent particle volumes (50µm. 3. ) of clinically relevant CoCr nano-particles (10–120nm). The CoCr nano-particles had significant cytotoxic effects from day 1, whereas the composite ceramic particles only showed cytotoxic effects at particle concentrations of 50 and 500µm. 3. after 6 days. The increased cytotoxicity of the clinically relevant CoCr nano-particles may have been attributed to the release of Co and Cr ions. This study demonstrated the potential cytotoxic effects of model ceramic particles at very high volume concentrations, but it is unlikely that such high particle volumes will be experienced routinely in vivo in such low wearing bearing materials. Future work will investigate the longer-term effects on genotoxicity and oxidative stress of low volumes of clinically-relevant generated BIOLOX® delta ceramic wear particles


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 42 - 42
1 Jan 2019
Lal S Hall R Tipper JL
Full Access

Since 2010, there has been a sharp decline in the use of metal-on-metal joint replacement devices due to adverse responses associated with the release of metal wear particles and ions in patients. Surface engineered coatings offer an innovative solution to this problem by covering metal implant surfaces with biocompatible and wear resistant materials. The present study tests the hypothesis whether surface engineered coatings can reduce the overall biological impact of a device by investigating recently introduced silicon nitride coatings for joint replacements. Biological responses of peripheral blood mononuclear cells (PBMNCs) to Si3N4 model particles, SiNx coating wear particles and CoCr wear particles were evaluated by testing cytotoxicity, inflammatory cytokine release, oxidative stress and genotoxicity. Clinically relevant wear particles were generated from SiNx-on-SiNx and CoCr-on-CoCr bearing combinations using a multidirectional pin-on-plate tribometer. All particles were heat treated at 180°C for 4 h to destroy endotoxin contamination. Whole peripheral blood was collected from healthy donors (ethics approval BIOSCI 10–108, University of Leeds). The PBMNCs were isolated using Lymphoprep (Stemcell) and incubated with particles at various volumetric concentrations (0.5 to 100 µm3 particles/cell) for 24 h in 5% (v/v) CO2 at 37°C. After incubation, cell viability was measured using the ATPlite assay (Perkin Elmer); TNF-alpha release was measured by ELISA (Invitrogen); oxidative stress was measured using H2DCFDA (Abcam); and DNA damage was measured by comet assay (Tevigen). The results were expressed as mean ± 95% confidence limits and the data was analysed using one-way ANOVA and Tukey-Kramer post-hoc analysis. No evidence of cytotoxicity, oxidative stress, TNF-alpha release, or DNA damage was observed for the silicon nitride particles at any of the doses. However, CoCr wear particles caused cytotoxicity, oxidative stress, TNF-alpha release and DNA damage in PBMNCs at high doses (50 µm3 particles per cell). This study has demonstrated the in-vitro biocompatibility of SiNx coatings with primary human monocytic cells. Therefore, surface engineered coatings have potential to significantly reduce the biological impact of metal components in future orthopaedic devices


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 48 - 48
1 Apr 2018
Reyna ALP Fritz B Schwiesau J Summer B Thomas P Grupp TM
Full Access

Total knee arthroplasty is a well established treatment for degenerative joint disease with good clinical results. However, complications may occur due to a biological response to polyethylene wear particles, leading to osteolysis and aseptic loosening, as well as local and systemic hypersensitivity reactions triggered by metal ions and particles such as chromium, cobalt and molybdenum. Moreover, there is an increasing demand on the performance of these implants, as this treatment is also performed in heavier, younger and middle-aged adults who have a significant physical activity and higher life expectancy. The purpose of the following study was to compare the wear characteristics and performance of a zirconium nitride (ZrN) coated knee implant, designed for patients with metal ion hypersensitivity, against the clinically established cobalt-chromium (CoCr) version under a high demanding activities wear simulation. Medium size AS Columbus® DD (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN surface were tested in comparison with the cobalt-chromium version Columbus® DD. For both groups, ultra-high-molecular weight polyethylene (UHMWPE) gliding surfaces (size T3, high 10 mm) were used. Wear simulation was performed on a load controlled 4 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of daily activities measured in vivo (Bergmann et al, 2014) on 8 patients and normalized to a patient weight of 100 kg (Schwiesau et al, 2014). The load profiles were applied for 5 million cycles in a combination of 40% stairs up, 40% stairs down, 10% level walking, 8% chair raising and 2% deep squatting. Test serum was changed every 0.5 million cycles and all the components were cleaned and analyzed according to ISO 14243-2:2009(E). The gliding surfaces were evaluated for gravimetric wear and wear patterns, femur components analyzed for scratches and the test medium analyzed for metal ion concentration (cobalt, chromium, molybdenum and zirconium) using ICP-MS according to ISO 17294-2. The present study showed a wear rate reduction for the ZrN group (1.01 ± 0.29 mg/million) in comparison with the CoCr group (2.40 ± 1.18 mg/million cycles). The articulation surface of the ZrN coated femurs remained polished after the testing period, whereas the uncoated femurs showed wear scratches. Furthermore, the metal ion release from the ZrN coated implants was reduced orders of magnitude in comparison with the CoCr implants through the entire test. These results demonstrate the efficiency of ZrN coated knee implants to reduce wear as well as to prevent metal ion release in the knee joint


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 19 - 19
1 Apr 2017
Corrado P Alan P Michael S
Full Access

Background. As the number of ceramic THR bearings used worldwide is increasing, the number of implants that experience off-normal working conditions, e.g. edge loading, third bodies in the joint, soft tissues laxity, dislocation/subluxation of the joint, increases too. Under all such conditions the bearing surfaces can be damaged, leading eventually to a limitation of the expected performances of the implant. Methods. We characterised the damage resistance of different bearing surfaces (alumina matrix composite BIOLOXdelta, alpha-alumina BIOLOXforte, zirconia 3Y-TZP, oxidized zirconium alloy Zr-2.5Nb, CoCr-alloy) by scratch tests performed following the European standard EN 1071–3:2005. Also the scratch hardness of same materials has been assessed. Results. The Lc1 value (i.e., the load for the onset of a scratch) measured for BIOLOXdelta is about fivefold the one measured for the oxidized zirconium alloy (OXZr) surface and about tenfold the Lc1 measured for the CoCr alloy. The height of ridges along the scratch edges due to plastic flow in the composite ceramic BIOLOXdelta are only 21% in height than in CoCr, and only a small fraction (0.04%) of the height of ridges measured on OXZr surfaces. The scratch hardness of the metal samples tested (CoCr, OXZr) results one order of magnitude lower than the ones of ceramics. This behavior is not influenced by of the presence of the coating on OXZr surface. Conclusions. The transformation toughened ceramics tested (BIOLOXdelta, 3Y-TZP) are the materials that exhibit the higher resistance to scratching. Ridges at scratch edges are lower in ceramics than in coated or uncoated metals. The result show the superior scratch resistance behavior of toughened ceramics for THR wear couples with respect to coated or bare alloys. Level of Evidence. Level 1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 27 - 27
1 Apr 2017
Adesina T Ajami S Coathup M Blunn G
Full Access

Background. Stress shielding and wear induced aseptic loosening cause failure in arthroplasty surgery. To improve survivorship, the use of a low modulus, low wearing biomaterial may be a suitable alternative to hard bearing prostheses, such as cobalt chromium (CoCr). There has been considerable research interest in the use of polyetheretherketone (PEEK) based on observed clinical success especially in spinal surgery. This study investigated the wear performance of PEEK, carbon reinforced PEEK (CFR-PEEK) and acetal as bearing materials in an all polymer total knee arthroplasty (TKA) using a unidirectional pin on plate test. Methods. The following material combinations were tested: PEEK vs. UHMWPE, CFR-PEEK vs. UHMWPE, PEEK vs. PEEK, CFR-PEEK vs. PEEK, CoCr vs. UHMWPE, PEEK vs. XLPE, CFR-PEEK vs. CFR-PEEK, PEEK vs. Acetal, Acetal vs. XLPE and CoCr vs. XLPE.Tribological couples tested (Pin vs. Plate) Using a previously validated modification of ASTM F732, 20mm diameter spherically ended pins with a radius of 25mm were articulated against 40mm diameter plates. A load of 1000N was applied to generate a contact stress of about 70MPa similar to contact stresses previously reported in the knee. The lubricant used was 25% newborn calf serum containing 0.3% sodium azide to retard bacteria growth and 20mM EDTA to prevent calcium deposition. Three repeats of pin on plate combinations (including 2 passive soak controls) were tested for 2 million cycles at a cycle frequency of 1Hz and a stroke length of 10 mm. Gravimetric wear was analysed every 250,000 cycles and results converted to volumetric wear using material density. Results. All CFR-PEEK articulations were stopped due to excessive wear of the counter-surfaces. Results showed a linear wear rate of UHMWPE and XLPE plates over the test period. PEEK vs. XLPE showed similar wear rate to metal on polyethylene (MoP) bearings. Conclusion. At stresses representative of the knee, PEEK pins when articulated against XLPE plates generated volumetric wear similar to that noted in MoP bearings


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 12 - 12
1 Mar 2013
Bolland B Roques A Maul C Cook R Wood R Tuke M Latham J
Full Access

The poor outcome of large head metal on metal total hip replacements (LHMOMTHR) in the absence of abnormal articulating surface wear has focussed attention on the trunnion / taper interface. The RedLux ultra-precision 3D form profiler provides a novel indirect optical method to detect small changes in form and surface finish of the head taper as well as quantitative assessment of wear volume. This study aimed to assess and compare qualitatively tapers from small and large diameter MOMTHR's. Tapers from 3 retrieval groups were analysed. Group 1: 28mm CoCr heads from MOMTHRs (n=5); Group 2: Large diameter CoCr heads from LHMOMTHRs (n=5); Gp 3 (control): 28mm heads from metal on polyethylene (MOP) THRs; n=3). Clinical data on the retrievals was collated. RedLux profiling of tapers produced a taper angle and 3D surface maps. The taper angles were compared to those obtained using CMM measurements. There was no difference between groups in mean 12/14 taper angles or bearing surface volumetric and linear wear. Only LHMOMs showed transfer of pattern from stem trunnion to head taper, with clear demarcation of contact and damaged areas.3D surface mapping demonstrated wear patterns compatible with motion or deformations between taper and trunnion in the LHMOM group. These appearances were not seen in tapers from small diameter MOM and MOP THRs. Differences in appearance of the taper surface between poorly functioning LHMOMTHRs and well functioning MOP or MOM small diameter devices highlight an area of concern and potential contributor to the mode of early failure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 40 - 40
1 Nov 2018
Lerf R Delfosse D
Full Access

A pin-on-disc tribometer test with a rotating disc and a sector-wise loaded pin was used to determine friction coefficients for different material pairings. The four pin materials porcine cartilage, subchondral bone of the porcine cartilage, UHMWPE, vitamin E enhanced, crosslinked UHMWPE (VEPE) in combination with the three-disc materials zirconia toughened alumina ceramic (ZTA), CoCr, carbon-fibre-reinforced carbon (CrC) were tested. Stepwise loading was employed with the forces 10 N, 5 N, 2 N and 1 N. Test duration was 1 h. Diluted calf serum according ISO 14242-1 was used to determine the friction coefficients. The surface topography of all pins was examined using optical profilometry before and after the rotation tribometer tests. - No wear related modifications of the surface roughness parameters could be found. The coefficients of friction (COF) were lowest for the cartilage pins against all three-disc materials, with steady-state values between 0.01 and 0.02 for the highest applied load (10 N). Friction of subchondral bone yielded COF in the range 0.2 … 0.6, depending on the counterpart material. The two polyethylene materials behaved similar in this friction test with COF of about 0.1. The Ra roughness values of the different pins reflect the COF results: Ra of subchondral bone was one order of magnitude higher than Ra of the cartilage. This is in-line with the COF-values of bone being one order of magnitude higher than those of cartilage. These results will be discussed in view of the use of the disc materials as orthopaedic hemi-prostheses


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 79 - 79
1 Jul 2014
Jauch S Huber G Sellenschloh K Haschke H Grupp T Morlock M
Full Access

Summary. Micromotions between stem and neck adapter depend on prosthesis design and material coupling. Based on the results of this study, the amount of micromotion seems to reflect the risk of fretting-induced fatigue in vivo. Introduction. Bimodular hip prostheses were developed to allow surgeons an individual reconstruction of the hip joint by varying length, offset and anteversion in the operation theatre. Despite these advantages, the use of these systems led to a high rate of postoperative complications resulting in revision rates of up to 11% ten years after surgical intervention. During daily activities taper connections of modular hip implants are highly stressed regions and contain the potential of micromotions between adjacent components, fretting and corrosion. This might explain why an elevated number of fretting-induced neck fractures occurred in clinics. However, some bi-modular prostheses (e.g. Metha, Aesculap, Ti-Ti) are more often affected by those complications than others (e.g. H-Max M, Limacorporate, Ti-Ti or Metha, Ti-CoCr) implying that the design and the material coupling have an impact on this failure pattern. Therefore, the purpose of this study was to clarify whether clinical successful prostheses offer lower micromotions than those with an elevated number of in vivo fractures. Materials and Methods. Two different bimodular hip designs (Metha and H-Max M, n = 6 each) were tested in vitro. Embedded Ti6Al4V (Ti) stems were assembled with Ti or CoCr29Mo (CoCr) necks and sinusoidally loaded (f = 1 Hz, 10,000 cycles) ranging from 0.23 to 4.30 kN (peak to peak, represents going upstairs) using a servohydraulic testing machine (MiniBionix II, MTS). Based on the results of four eddy-current sensors, micromotions were assessed in the region of the crack origin of fractured prostheses (lateral radius). Due to the test set-up, the recorded displacement includes, beside the real micromotions, the elastic deformation between sensor holder and reflector. The amount of the elastic deformation was determined using the finite-element technique. For statistical analyses Twoway-ANOVAs were performed (α = 0.05). Results. The H-Max M prostheses exhibited significantly lower micromotions compared to Metha prostheses (1.8 ± 2.2 µm vs. 4.1 ± 3.2 µm, p = 0.03). For Ti-Ti couplings, Metha prostheses showed a trend towards higher micromotions compared to H-Max M (6.5 ± 1.6 µm vs. 3.6 ± 1.5 µm, p = 0.08). Independent of the design, prostheses with Ti neck adapters caused significantly higher micromotions than those with CoCr adapters (5.1 ± 2.1 µm vs. 0.8 ± 1.6 µm, p < 0.01). No differences between the clinically used Metha prostheses with CoCr neck adapters and H-Max M prostheses with Ti necks were found (2.6 ± 2.0 µm, p = 0.25). Discussion. Both, the material coupling and the design influence the interface micromotions. The magnitude of micromotions might explain why bimodular hip systems are susceptible to fretting-induced fractures; however, the threshold for critical micromotions is still not known. The results of this study indicate that the amount of micromotion at taper interfaces could be directly linked to the risk of clinical failure


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 305 - 305
1 Jul 2014
Roth A Bogie R Willems P Welting T Arts C van Rhijn L
Full Access

Summary Statement. Novel radiopaque UHMWPE sublaminar cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system for the surgical treatment of early onset scoliosis. Introduction. Growth-guidance or self-lengthening rod systems are an alternative to subcutaneous growing rods and the vertical expandable prosthetic titanium rib for the treatment of early onset scoliosis. Their main perceived advantage over growing rods is the marked decrease in subsequent operative procedures. The Shilla growth-guidance system and a modern Luque trolley are examples of such systems; both depend on gliding pedicle screws and/or sliding titanium sublaminar wires. However, the unknown consequences of metal-on-metal wear debris are reason for concern especially in young patients. In this study, instrumentation stability, residual growth in the operated segment after surgery and biocompatibility of the novel radiopaque UHMWPE cables as an alternative to gliding pedicles screws or titanium sublaminar wires were assessed in an immature sheep model. Materials and methods. Twelve immature sheep were treated with segmental sublaminar spinal instrumentation: dual CoCr rods were held in place by pedicle screws at the most caudal instrumented level (L5) and novel radiopaque UHMWPE (Bi. 2. O. 3. additive) woven cables were placed at 5 thoracolumbar levels. Lateral radiographs were taken at 4-week intervals to evaluate growth of the instrumented segment. Four age-matched, unoperated animals served as radiographic control. After 24 weeks follow-up, the animals were sacrificed and the spines were harvested for histological evaluation and CT analysis. Results. No neurological deficits and no complications occurred during the initial postoperative period. One animal died during follow-up due to unknown cause. At sacrifice, none of the cables had loosened and the instrumentation remained stable. Substantial growth occurred in the instrumented segment (L5-T13) in the intervention group. No significant difference in growth of the operated segment was found between the intervention and control groups. Histological analysis showed fibrous encapsulation of the novel radiopaque UHMWPE sublaminar cable in the epidural space, with no evidence of chronic inflammation. Discussion. Novel radiopaque UHMWPE cables may be a promising alternative to gliding pedicle screws or titanium sublaminar cables within a growth-guidance system. UHMWPE cables may improve growth results due to the smooth surface properties of the UHMWPE cable and address concerns regarding the consequences of metal-on-metal wear debris


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 270 - 270
1 Jul 2014
Elliott W Kaimrajh D Sawardeker P Milne E Ouellette A Latta L
Full Access

Summary. The significance of matching radius of curvature of the radial head implant and the capitellum in implant selection is evaluated. A mismatch of radius of curvature could lead to point loading, reducing contact area, creating large contact stresses, resulting in arthritis, pain, and other complications. Introduction. Radial head (RH) implant size is chosen by reconstruction outside of the radiocapitellar joint capsule measuring the RH diameter and length, which is replicated for implant selection. RH radius of curvature (RC) is rarely part of the decision although important in determining contact area. Methods. Eleven fresh-frozen cadaver humeri were denuded, with articular cartilage intact. These were held horizontally in an MTS machine; capitellum faced up, and covered with a Tekscan transducer. RH implants were attached by vice to the MTS driving piston. Four different RH implant models were compared: Ascension, Integra Katalyst, Stryker Small and Medium, all CoCr. All implants were 21mm in outer diameter, except the Stryker small implant (18mm). Cyclic axial loading was applied through the RH implant to the capitellum. Contact area and stress concentrations were captured by the transducer. Loading was applied with stroke control until steady state loading occurred between specified values of 115N-65N, within 1N of peak and 5N of base values. Using the Stryker 21mm implant loading at 155N-65N and 195N-105N simulated over-sizings of +2mm and +4mm. Results. Percent difference between RH and Capitellar RC's were plotted against corresponding Contact Areas of 21mm sized RH implants, and a linear regression done. Negative values corresponded with larger RH than capitellar RC values. The resulting slope was 92.19, showing a significant increase in contact area with decreased RH to capitellar ratios, with an R. 2. value of 0.8122, showing a linear trend. Total stresses were calculated for all maximum contact areas, using the peak values. Discussion. Clinical RH implant sizing comes from native head diameter, not curvature. Improper RC could lead to point loading, reducing contact area, creating large contact stresses, resulting in arthritis, pain, and other complications. This can be seen through the linear relation between contact area and RC. With an RH implant RC of greater value than capitellar RC, the contact area decreases significantly, resulting in increased stress. The significance of RC matching in implant selection. Increases in stress are greater for differences in RC values, than for improper sizing of diameter (D=85.7%) or length (+2mm, +4mm). With the decrease in contact area with increased implant RC, and the changes in stress compared to improper sizings (length and diameter), it can be seen that implant RC is an important feature in RH implant selection