Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 223 - 223
1 Sep 2012
Herrera L Loving L Essner A Nevelos J
Full Access

Osteolysis induced by UHMWPE debris has historically been one of the major causes of long term failure of TJR. An increase in concentration of polyethylene particles in the peri-prostheic tissue has been linked to an increased incidence of osteolysis. The dual mobility hip bearing concept mates a femoral head into a polyethylene liner which has an unconstrained articulation into a metal shell. The wear mechanism of the dual mobility hip bearing is distinct from a constrained single articulation design, which may result in a difference in wear debris particles. The aim of this study is to evaluate wear debris generated from a dual mobility hip and compare it to a conventional single articulation design when both are manufactured from sequentially crosslinked and annealed polyethylene. The dual mobility hip (Restoration ADM) incorporated a 28mm CoCr femoral head into a polyethylene liner that articulates against a metal shell (48mm ID). The conventional hip (Trident®) mated a 28mm CoCr femoral head against a polyethylene liner. The polyethylene for all liners was sequentially crosslinked and annealed (X3). A hip joint simulator was used for testing at a rate of 1 Hz with cyclic Paul curve physiologic loading. A serum sample from each testing group was collected. Serum samples were protein digested following the published process by Scott et al. The digested serum was then filtered through a series of polycarbonate filter papers of decreasing size and sputter coated with gold for analysis using SEM. Image fields were randomized and wear debris was compared in terms of its length, width, aspect ration, and equivalent circular diameter (ECD). A total of 149 conventional hip particles and 114 dual mobility hip particles were imaged. Results show a majority of particles are of spherical nature and images do not indicate the presence of fibrillar or larger elongated polyethylene debris. Particle length between designs is not statistically different, while all other comparisons show statistical significance (p<0.05). It is hypothesized that the dual mobility hip system reduces the total amount of cross-shear motion on any one articulation, which aids in the reduction in wear. This design feature may be responsible for the slight difference in morphology of dual mobility wear debris when compared to the constrained hip design. The length of the particles was similar, simply indicating a different shape rather than a marked reduction in overall size. The debris generated is this study was from highly crosslinked polyethylene in two different designs, which produced a very significant decrease in quantity of particles when compared to the quantity of debris from conventional polyethylene. The wear debris was of similar length in both designs and so we do not expect any difference in biological response to debris from either device. The dual mobility design has also shown no effect of cup abduction angle on wear demonstrating forgiveness to implant positioning. This advantage, combined with the low wear rate and similar length wear particles, should lead to good clinical performance of dual mobility cups with sequentially irradiated and annealed polyethylene


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 206 - 206
1 Sep 2012
Zietz C Fritsche A Lange R Mittelmeier W Bader R
Full Access

Due to increased life expectancy of human population, the amount of total knee replacements (TKR) is expected to increase. TKR reached a high grade of quality and safety, but most often it fail because of aseptic implant loosening caused by polyethylene (PE) wear debris. Wear is generated at the articulating surfaces, e.g. caused by three body particles, like bone fragments or bone cement particles. The aim of this experimental study was to compare the wear of tibial PE inserts combined with metallic and ceramic femoral components at three body wear situation induced by polymethylmethacrylate (PMMA) and zirconia (ZrO2) particles from the bone cement. Wear testing was performed for 5 Mio load cycles, using tibial standard PE inserts combined with the same CR femoral component, in two different materials, Cobalt Chromium (CoCrMo) and Biolox delta ® ceramic (Multigen Plus Knee System, Lima Corporate, Italy). A knee wear simulator, according to ISO 14243 (EndoLab GmbH, Rosenheim, Germany), was used to carry out the tests. The tests were performed in temperature-controlled test chambers at 37 °C, containing calf serum with a protein content of 30 g/l. Polymethylmethacrylate (PMMA) and zirconia (ZrO2) bone cement particles (Palacos R ®) were manufactured to a size of 30 μm. The three body particles were added at all stations onto the articulating surface of the tibial PE insert (7mg per condyle) at every 500,000 cycles. Wear was determined gravimetrically and the surfaces of tibial inserts were analysed by scanning electron microscope (SEM) after finishing the 5 million cycles. Furthermore, roughness of the PE insert surfaces and the articulating surfaces of the different femoral components were detected and the PE wear particles were analysed by SEM. The average gravimetrical wear rates of the tibial PE inserts in combination with CoCr and Biolox delta ® ceramic femoral components amounted to 6.4 ± 0.9 mg and 2.6 ± 0.4 mg per million cycles, respectively. Beside bone cement particles on the articulating surface of the PE inserts, polished surfaces and scratches were detected by SEM. In comparison to the untreated surfaces of the PE inserts at both material pairings the surface roughness at the articulating areas showed deep scratches and polished regions. Analyses of the metallic femoral components showed scratches at the articulating surfaces, none on ceramics. The present study pointed out the effect of femoral component material in an abrasive three body wear situation on the wear properties of TKR. The wear simulator tests showed that wear of PE inserts under three body wear conditions, in combination with ceramic femoral components, was significantly lower than with metallic femoral components. With regard to anti-allergic properties, ceramic femoral components are promising products for TKR


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 361 - 361
1 Sep 2012
Grimm B Tonino A Heyligers I
Full Access

Introduction. Large wear rate reductions have been shown for crosslinked PE in simulators and short- to mid-term clinical wear studies. However, concerns persist about long-term in-vivo oxidation (especially with annealed PE), late accelerating wear and the possibly higher osteolytic potential of crosslinked PE particle debris. This is the first long-term study comparing conventional to crosslinked PE investigating whether the wear reduction is maintained in the long-term and if reduced osteolysis becomes evident. Materials & Methods. In a prospective study 48 primary THA patients (Stryker ABG-II, 28mm CoCr heads) were randomized to either receive a first generation crosslinked PE (Stryker Duration: 3MRad gamma irradiation in N2, annealed) or then conventional, now “historic” PE (3MRad gamma irradiation in air). Both groups were statistically non-different (p>0.1) regarding age (63.9 years), gender, BMI, stem and cup size, cup inclination, liner thickness or pre- and post-op HHS leaving the insert material as the only variable. Patients were followed-up annually using the Harris Hip score, AP and lateral radiographs and digital wear measurements using Roman V1.70 [1, 2]. Wear and radiographic signs of osteolysis were analysed at a mean follow-up of 12.9 years (12.0–13.3). Groups were compared using the t-test (means) or the Fisher Exact test (proportions). Results. Thirty-one patients (18 conventional, 13 Duration) were left for analysis (8 deaths, 9 lost to FU). At 13yrs the total linear head penetration was sign. lower with Duration (0.70 ±0.36mm, range: 0.3–1.2mm) than conventional PE (1.56 ±0.83, range: 0.4–3.3mm, p=0.015). Also the annual wear rate was sign. lower (p=0.005) for Duration (0.063 ±0.027mm/yr) than conventional PE (0.122 ±0.065mm/yr). This reduction (−48%) compared well to the original simulator prediction (−45%) and even increased with time (−30% at 5yrs, −38% at 8yrs, −42% at 10yrs). In the Duration group only 1 patient had a wear rate >0.1mm/yr (osteolysis threshold) compared to 10 in the Conventional group (p=0.007). Patients with radiographic signs of acetabular osteolysis (cysts) on the AP x-ray were less frequent in the Duration (4/13=31%) than in conventional group (13/18=72%, p=0.023). This difference became even more pronounced when also the lateral view was evaluated and the affected DeLee-Charnley zones were counted (7 vs 22, p=0.017). Only in the conventional group a revision was performed (cup for wear). Discussion & Conclusions. At long-term FU the absolute wear rate of Duration crosslinked PE did not increase but decrease and the wear relative reduction did not deteriorate but increased. The incidence of osteolysis was sign. less. Thus No clinical evidence of degradation or elevated osteolytic potential for this annealed first generation crosslinked PE debris was found