Advertisement for orthosearch.org.uk
Results 1 - 20 of 980
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1366 - 1372
1 Oct 2017
Rickert M Fleege C Tarhan T Schreiner S Makowski MR Rauschmann M Arabmotlagh M

Aims. We compared the clinical and radiological outcomes of using a polyetheretherketone cage with (TiPEEK) and without a titanium coating (PEEK) for instrumented transforaminal lumbar interbody fusion (TLIF). Materials and Methods. We conducted a randomised clinical pilot trial of 40 patients who were scheduled to undergo a TLIF procedure at one or two levels between L2 and L5. The Oswestry disability index (ODI), EuroQoL-5D, and back and leg pain were determined pre-operatively, and at three, six, and 12 months post-operatively. Fusion rates were assessed by thin slice CT at three months and by functional radiography at 12 months. Results. At final follow-up, one patient in each group had been lost to follow-up. Two patients in each of the PEEK and TiPEEK groups were revised for pseudarthrosis (p = 1.00). The rate of complete or partial fusion at three months was 91.7% in both groups. Overall, there were no significant differences in ODI or in radiological outcomes between the groups. Conclusion. Favourable results with identical clinical outcomes and a high rate of fusion was seen in both groups. The titanium coating appears to have no negative effects on outcome or safety in the short term. A future study to determine the effect of titanium coating is warranted. Cite this article: Bone Joint J 2017;99-B:1366–72


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 423 - 429
1 Mar 2021
Diez-Escudero A Hailer NP

Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article: Bone Joint J 2021;103-B(3):423–429


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 93 - 94
1 Mar 2010
Noda I Ando Y Miyamoto H Shimazaki T Yonekura Y Miyazaki M Mawatari M Hotokebuchi T
Full Access

Bacterial infection related to orthopaedic implants is a significant complication today. One of the ways to reduce the incidence of implant-associated infections is assumed to give antibacterial activity to surface of implant itself. We focused attention on Ag, because it has a broad antibacterial spectrum, strong antimicrobial activity and low toxicity. In the previous works, sputtering, electrochemically deposition and sol-gel coating of Ag-containing hydroxyapatite (HA) have been reported. However, since practical technique of HA coating widely used for medical and dental implants has been the “thermal spraying” technique over the last two decades, we aimed at developing the novel thermal spraying technology for Ag-HA coating with antibacterial activity. In this study, physical and chemical properties, in vitro antibacterial activity, inhibition activity of bacterial attachment, HA-forming ability, cytotoxicity and release of Ag ions of the thermal-sprayed Ag-HA coating were evaluated. HA powder containing 3wt % of silver oxide (Ag2O) was sprayed on surface of titanium disks by the thermal spraying method using acetylene torch. SEM images showed a typical structure of the thermal-sprayed coating and the X-ray diffraction (XRD) pattern of the coating showed an amorphous structure. Ag residue in the coating was determined by the elementary analysis. The coating showed strong antibacterial activity and inhabitation activity of bacterial attachment to the methicillin-resistant Staphylococcus aureus (MRSA) in fetal bovine serum (FBS). On the other hand, the coating showed fast HA-forming ability in simulated body fluid (SBF) and no cytotoxicity related to Ag contained in the coating. Therefore, it is expected that the thermal-sprayed Ag-HA coating provides antibacterial and bone-bonding ability on the surface of the implant itself. In addition, though the HA coating is generally liable to adhere bacteria, the thermal-sprayed Ag-HA coating overcomes this problem. Pre-evaluation of release of Ag ions from the Ag-containing ceramic powders indicated that the releasing behavior of Ag ions in SBFs is dependent on the existing form of Ag in the Ag-containing material. It is assumed that most of Ag components in the Ag-HA coating are not retained as metallic Ag but as Ag2O in the amorphous layer. Time-course release tests of Ag ions from the coating in FBS showed a large release rate of Ag ions until 24 h after the immersion. It is expected that the Ag-HA coating could show strong antibacterial activity at the early post-operative stage. In the repeated release testing, the amount of released Ag ions was about 6500 ppb for the first release test, after which it gradually decreased. However, a significant release amount of Ag ions was observed even after the sixth repeat test. Therefore, it was assumed that the thermal-sprayed Ag-HA coating has a slow-release property of Ag ions in FBS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 78 - 78
4 Apr 2023
Voropai V Nieher M Kratsch A Kirchner W Giggel B Lohmann C Bertrand J Weißmantel S Döring J
Full Access

Total knee arthroplasty is one of the most common surgeries. About 92% of all implanted knee endorposthesis in 2020 were manufactured from uncoated CoCrMo articulating on ultra-high-molecular-weight polyethylene. All articluations generate wear particles and subsequent emission of metal ions due to the mechanical loading. These wear particles cause diverse negative reactions in the surrounding tissues and can lead to implant loosening. Coating technologies might offer the possibility to reduce this wear. Therefore, we investigated the applicability of tetrahedral amorphous carbon (ta-C) coating on CoCrMo alloy. Polished specimens made of CoCrMo wrought alloy according to ISO 5832-12 were coated with ta-C coatings with different layer structure using pulsed laser deposition (PLD). This process allows the deposition of ta-C coatings with low internal stress using an additional relaxation laser. Surface quality and mechanical properties of the coating were characterised using optical surface measurements (NanoFocus μsurf expert, NanoFocus AG) and a nanoindentation tester NHT. 3. (Anton Paar GmbH). Scratch tests were performed on Micro Scratch Tester MST. 3. (Anton Paar TriTec SA) to define the coating adhesion. Pin-on-plate tribological tests, with a polyethylene ball sliding on the ta-C-coated plate under a defined load according to ISO 14243-1 were performed using a linear tribometer (Anton Paar GmbH) to evaluate the tribological and wear properties. The ta-C coatings showed a mean roughness Ra of 5-20 nm and a hardness up to 60 GPa (n=3). The adhesion of the ta-C coatings (n=3) was comparable to the commercial coatings like TiN and TiNbN. The pin-on-plate tests showed an improvement of tribological properties in comparison with the polished uncoated CoCrMo specimens (n=3). The ta-C coatings applied by DLP technology show increased hardness compared to the base material and sufficient adhesion. Further research will be needed to investigate the optimal coating strategy for implant coating


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 87 - 87
1 Oct 2022
Puetzler J Hasselmann J Gosheger G Niemann S Fobker M Hillebrand J Schwarze J Theil C Schulze M
Full Access

Aim. A novel anti-infective biopolymer implant coating was developed to prevent bacterial biofilm formation and allow on-demand burst release of anti-infective silver (Ag) into the surrounding of the implant at any time after surgery via focused high-energy extracorporeal shock waves (fhESW). Method. A semi-crystalline Poly-L-lactic acid (PLLA) was loaded with homogeneously dissolved silver (Ag) applied onto Ti6Al4V discs. A fibroblast WST-1 assay was performed to ensure adequate biocompatibility of the Ag concentration at 6%. The prevention of early biofilm formation was investigated in a biofilm model with Staphylococcus epidermidis RP62A after incubation for 24 hours via quantitative bacteriology. In addition, the effect of released Ag after fhESW (Storz DUOLITH SD1: 4000 impulses, 1,24 mJ/mm. 2. , 3Hz, 162J) was assessed via optical density of bacterial cultures (Escherichia coli TG1, Staphylococcus epidermidis RP62A, Staphylococcus aureus 6850) and compared to an established electroplated silver coating. The amount of released Ag after the application of different intensities of fhESW was measured and compared to a control group without fhESW via graphite furnace atomic absorption spectrometry (GF-AAS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Results. The coating with 6% Ag reduced Staphylococcus epidermidis biofilm formation by 99.7% (mean±SD: 2.1×10^5 ± 3,9×10^5 CFU/µL) compared to uncoated controls (6.8×10^7 ± 4.9×10^7 CFU/µL); (p=0.0001). After applying fhESW the commercially available electroplated silver coating did not prevent the growth of all tested bacterial strains. Bacterial growth is delayed with 4% Ag and completely inhibited with 6% Ag in the novel coating, except for a small increase of S. aureus after 17 hours. SEM and EDS confirmed a local disruption of the coating after fhESW. Conclusions. This novel anti-infective implant coating has the potential to prevent bacterial biofilm formation. The on-demand burst release of silver via fhESW could be an adjunctive in the treatment of implant related infection and is of particular interest in the concept of single stage revision surgery


Bone & Joint Research
Vol. 8, Issue 5 | Pages 199 - 206
1 May 2019
Romanò CL Tsuchiya H Morelli I Battaglia AG Drago L

Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma. Cite this article: C. L. Romanò, H. Tsuchiya, I. Morelli, A. G. Battaglia, L. Drago. Antibacterial coating of implants: are we missing something? Bone Joint Res 2019;8:199–206. DOI: 10.1302/2046-3758.85.BJR-2018-0316


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 36 - 36
11 Apr 2023
Boyce S Le Maitre C Smith T Nichol T
Full Access

An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to antimicrobial resistant biofilm development on implant surfaces and surrounding tissues, with treatment typically involving invasive surgeries and systemic antibiotic delivery. Consequently, functionalisation of implant surfaces to prevent biofilm formation is a major research focus. This study characterises clinically relevant antimicrobials including gentamicin, clindamycin, daptomycin, vancomycin and caspofungin within a silica-based, biodegradable sol-gel coating for prosthetic devices. Antimicrobial activity of the coatings against clinically relevant microorganisms was assessed via disc diffusion assays, broth microdilution culture methods and the MBEC assay used to determine anti-biofilm activity. Human and bovine cells were cultured in presence of antimicrobial sol-gel to determine cytotoxicity using Alamar blue and antibiotic release was measured by LC-MS. Biodegradability in physiological conditions was assayed by FT-IR, ICP-MS and measuring mass change. Effect of degradation products on osteogenesis were studied by culturing mesenchymal stem cells in the presence of media in which sol-gel samples had been immersed. Antimicrobial-loaded coatings showed strong activity against a wide range of clinically relevant bacterial and fungal pathogens with no loss of activity from antibiotic alone. The sol-gel coating demonstrated controlled release of antimicrobials and initial sol-gel coatings showed no loss of viability on MSCs with gentamicin containing coatings. Current work is underway investigating cytotoxicity of sol-gel compositions against MG-63 cells and primary osteoblasts. This research forms part of an extended study into a promising antimicrobial delivery strategy to prevent PJI. The implant coating has potential to advance PJI infection prevention, reducing future burden upon healthcare costs and patient wellbeing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 31 - 31
11 Apr 2023
Powell D Wu B Dietz P Bou-Akl T Ren W Markel D
Full Access

Failure of osseointegration and periprosthetic joint infection (PJI) are the two main reasons of implant failure after total joint replacement (TJR). Nanofiber (NF) implant surface coating represents an alternative local drug eluting device that improves osseointegration and decreases the risk of PJI. The purpose of this study was to investigate the therapeutic efficacies of erythromycin (EM)-loaded coaxial PLGA/PCL-PVA NF coating in a rat S. aureus-infected tibia model. NF coatings with 100mg and 1000mg EM were prepared. NF without EM was included as positive control. 56 Sprague Dawley rats were divided into 4 groups. A titanium pin (1.0-mm x 8 mm) was placed into the tibia through the intercondylar notch. S. aureus (SA) was introduced by both direct injection of 10 μl broth (1 × 10. 4. CFU) into the medullary cavity and single dip of Ti pins into a similar solution prior to insertion. Rats were sacrificed at 8 and 16 weeks after surgery. The outcome measurements include μCT based quantitative osteolysis evaluation and hard tissue histology. Results: EM-NF coating (EM100 and EM1000) reduced osteolysis at 8 and 16 weeks, compared to EM0 and negative control. The effective infection control by EM-NFs was further confirmed by hard tissue section analysis. The Bone implant contact (BIC) and bone area fraction Occupancy (BAFO) within 200 µm of the surface of the pins were used to evaluate the osseointegration and new bone formation around the implants. At 16 weeks, the bone implant contact (BIC) of EM 100 (35.08%) was higher than that of negative control (3.43%) and EM0 (0%). The bone area fraction occupancy within 200 µm (BAFO) of EM100 (0.63 mm2) was higher than that of negative control (0.390 mm2) and EM0 (0.0 mm. 2. ). The BAFO of EM100 was also higher than that of EM1000 (0.3mm. 2. ). There was much less osteolysis observed with EM100 and EM1000 NF coatings at 16 weeks, as compared to EM0 positive control, p=0.08 and p=0.1, respectively. Osseointegration and periprosthetic bone formation was enhanced by EM-NFs, especially EM100. Data from this pilot study is promising for improving implant surface fabrication strategies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 45 - 45
2 Jan 2024
Riool M Li R Hofwegen L de Boer L Loontjens J Zaat S
Full Access

Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs). Medical grade titanium implants were dip-coated in subsequent solutions of hyperbranched polymer, polyethyleneimine and 10 mM sodium iodide, and ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery. Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed S. aureus and S. epidermidis in vitro. The QAC-coating strongly reduced S. aureus colonization of the implant surface as well as of the surrounding tissue, with no apparent macroscopic signs of toxicity or inflammation in the peri-implant tissue at 1 and 4 days after implantation. An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era. Acknowledgements: This research was financially supported by the Health∼Holland/LSH-TKI call 2021–2022, project 25687, NACQAC: ‘Novel antimicrobial coatings with stable non-antibiotic Quaternary Ammonium Compounds and photosensitizer technology'


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 29 - 29
24 Nov 2023
Riool M Li R van Hofwegen L Vavilthota N de Boer L Loontjens J Zaat S
Full Access

Aim. The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. For still not well understood reasons, the presence of a foreign body strongly increases susceptibility to infection. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. Formation of biofilms on the biomaterial surface is generally considered the main reason for these persistent infections, although bacteria may also enter the surrounding tissue and become internalized within host cells. To prevent biofilm formation using a non-antibiotic based strategy, we aimed to develop a novel permanently fixed antimicrobial coating for titanium devices based on stable immobilized quaternary ammonium compounds (QACs). Method. Medical grade titanium implants (10×4×1 mm) were dip-coated in a solution of 10% (w/v) hyperbranched polymer, subsequently in a solution of 30% (w/v) polyethyleneimine and 10 mM sodium iodide, using a dip-coater, followed by a washing step for 10 min in ethanol. The QAC-coating was characterized using water contact angle measurements, scanning electron microscopy, FTIR, AFM and XPS. The antimicrobial activity of the coating was evaluated against S. aureus strain JAR060131 and S. epidermidis strain ATCC 12228 using the JIS Z 2801:2000 surface microbicidal assay. Lastly, we assessed the in vivo antimicrobial activity in a mouse subcutaneous implant infection model with S. aureus administered locally on the QAC-coated implants prior to implantation to mimic contamination during surgery. Results. Detailed material characterization of the titanium samples showed the presence of a homogenous and stable coating layer at the titanium surface. Moreover, the coating successfully killed S. aureus and S. epidermidis in vitro. The QAC-coating strongly reduced S. aureus colonization of the implant surface as well as of the surrounding tissue, with no apparent macroscopic signs of toxicity or inflammation in the peri-implant tissue at 1 and 4 days after implantation. Conclusions. An antimicrobial coating with stable quaternary ammonium compounds on titanium has been developed which holds promise to prevent BAI. Non-antibiotic-based antimicrobial coatings have great significance in guiding the design of novel antimicrobial coatings in the present, post-antibiotic era


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 95 - 95
23 Feb 2023
Grupp T Reyna AP Bader U Pfaff A Mihalko W Fink B
Full Access

ZrN-multilayer coating is clinically well established in total knee arthroplasty [1-3] and has demonstrated significant reduction in polyethylene wear and metal ion release [4,5]. The goal of our study was to analyze the biotribological behaviour of the ZrN-multilayer coating on a polished cobalt-chromium cemented hip stem. CoCr28Mo6 alloy hip stems with ZrN-multilayer coating (CoreHip®AS) were tested versus an un-coated version. In a worst-case-scenario the stems with ceramic heads have been tested in bovine serum in a severe cement interface debonding condition under a cyclic load of 3,875 N for 15 million cycles. After 1, 3, 5, 10 & 15 million cycles the surface texture was analysed by scanning-electron-microscopy (SEM) and energy-dispersive x-ray (EDX). Metal ion concentration of Co,Cr,Mo was measured by inductively coupled plasma mass spectroscopy (ICP-MS) after each test interval. Based on SEM/EDX analysis, it has been demonstrated that the ZrN-multilayer coating keeps his integrity over 15 million cycles of severe stem cemented interface debonding without any exposure of the CoCr28Mo6 substrate. The ZrN-multilayer coated polished cobalt-chromium cemented hip stem has shown a reduction of Co & Cr metal ion release by two orders of a magnitude, even under severe stem debonding and high interface micro-motion conditions. ZrN-multilayer coating on polished cobalt-chromium cemented hip stems might be a suitable option for further minimisation of Co & Cr metal ion release in total hip arthroplasty. Clinical evidence has to be proven during the next years


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma. Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model. The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial. Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2022
Jensen LK Jensen HE Blirup SA Bue M Hanberg P Soto S Aalbaek B Arkas M Vardavoulias M
Full Access

Aim. To develop a new system for antibacterial coating of joint prosthesis and osteosynthesis material. The new coating system was designed to release gentamicin immediately after insertion to eradicate surgical contamination. Method. Steel implants (2×15mm) were coated with a solid nanocomposite xerogel made from silica and the dendritic polymer, hyperbranched polyethyleneimine. The xerogel was anchored inside a porous surface made by pre-coating with titanium microspheres. Finally, gentamicin was encapsulated in the xerogel, i.e. no chemical binding. A total of 50 µg gentamicin was captured into each implant. The efficacy of the new coating was evaluated in a porcine model of implant associated osteomyelitis. In total, 30 female pigs were randomized into 3 study groups (n=10). Group A; plain implants + saline, Group B; plain implants + 10. 4. CFU of Staphylococcus aureus, and Group C; coated implants + 10. 4. CFU of S. aureus. Implant + inoculum was placed into a pre-drilled implant cavity of the right tibia and the pig was euthanized 5 days afterwards. Postmortem microbiology and pathology were performed. Two additional pigs were used in a pharmacokinetic study where microdialysis (MD) catheters were placed alongside coated implants. Extracellular fluid was sampled regularly for 24 hours from the MD catheters and analyzed for gentamicin content. Results. Within Groups A and C, all implants were found sterile by sonication and bacteria could not be identified within the surrounding bone tissue. In contrast, all Group B animals had S. aureus positive implant and tissue microbiology. Macroscopic and microscopic pathological examinations confirmed that Group A and C animals were complete identic, i.e. no pus around implants and only minor peri-implant inflammation related to insertion of implants per se. All Group B animals had pus around their implants and a massive peri-implant inflammatory response dominated by neutrophil granulocytes. Maximum gentamicin release (35 µg /mL) was measured in the first obtained MD sample, i.e. after 30 min, and the concentration stayed above the MIC level for the used S. aureus strain for 8 hours. Conclusions. The new xerogel coating prevented development of osteomyelitis. Prevention was due to a fast gentamicin release immediately following insertion and antimicrobial active concentrations were detectable several hours after implantation. This means that the critical time point of most relevant surgical procedures potentially could be protected by the novel coating. The new coating will be investigated on larger scale implants and full-size prosthesis in the future


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 56 - 56
1 Dec 2020
TOKTAŞ AG AKYÜREKLİ S OKUMUŞ Y GÜL M KÖSE N DOĞAN A
Full Access

Musculoskeletal disorders is one of most important health problems human population is facing includes. Approximately 310 thousand of hip protheses have been used in 45 years and older patients in total according to the recent studies have been done. [1, 2]. Many factors, including poor osseointegration or relaxation of the implant due to stress, limit the life of the load-bearing implants [3]. To overcome these difficulties and to protect metal implants inside the body, the surfaces of the implants were coated with silver ion doped hydroxyapatite/bioglass. In this study, silver doped hydroxyapatite ceramic powder and 6P57 bioglass were synthesized. Two different coating suspensions, 100% bioglass and 70% Ag-HAp / 30% bioglass, were prepared in methyl alcohol with a solid content of 1% by weight. Two layers were coated on the external fixator nails by using electrospray method with the bioglass and Ag-Hap/Bioglass suspensions respectively. The coated implants were cut with an equal surface area and kept in human blood plasma for different time. The scanning electron microscopy (SEM, Zeiss Supra 50VP and Zeiss Evo 50EP) and stereo microscope (Zeiss Axiocam Stemi 2000-C) were used to characterize microstructure and thickness of coated surface. Energy dispersive X-ray Spectroscopy was used characterized of chemical composition of coating. Changing of pH value of plasma was measured by pH meter (Hanna HI83414). In addition, the ICP method was used to determine the elements contained in the plasma fluid after dissolution. As a result of this study, physical and chemical changes occurring on the coating surface in different time periods are presented in detail


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 57 - 57
1 Feb 2017
Kawate K Munemoto M Kawahara I Tamai K Uchihara Y Takemura K Ono S Tanaka Y
Full Access

Introduction. To evaluate the effect of hydroxyapatite coating, two same shape cementless stems were compared in this randomized control trial study. Methods. Between May 2003 and February 2010, 88 patients had a primary cementless total hip arthroplasty with two different types of cementless stems. Forty-three patients had Proarc stems (P group) (Kyocera Medical, Osaka, Japan), and Forty-five patients had Proarc HA stems (HA group) (Kyocera Medical, Osaka, Japan) which was coated with thin (20 micrometer) hydroxyapatite on Proarc rough porous coating. Gender distribution, average age at surgery, average weight and average follow-up period were same in the two groups. The average follow-up period was 8.5 years (range, 5 to 13 years). The average age at the time of surgery was 63 years. Porous acetabular shells and highly crosslinked polyethylene liners made by Kyocera Medical corporation were implanted into all hips. Stems were implanted with a modified Hardinge surgical approach without trochanteric osteotomy. Harris Hip Score was used for clinical evaluation. Post-op radiographs of these patients were evaluated. Fisher's exact probability test was used for statistical analysis. P values of less than 0.05 were considered to be significant. Results. The mean preoperative score and postoperative score of P group were 39 points and 86 points, respectively. The mean preoperative score and postoperative score of HA group were 46 points and 87 points, respectively. All stems were evaluated as bone-ingrown fixation in both groups. The rate of varus inclination was not different between two groups. The rate of severe stress shielding was not different. Discussion. However hydroxyapatite coating is useful for early fixation, the adverse effect, such as delamination for long-term in vivo situation is questionable. There was no significant difference between P-group and HA group in the present study. Longer follow-up is required to evaluate hydroxyapatite coating


Bone & Joint Research
Vol. 9, Issue 12 | Pages 848 - 856
1 Dec 2020
Ramalhete R Brown R Blunn G Skinner J Coathup M Graney I Sanghani-Kerai A

Aims. Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Methods. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. Results. ABG-gentamicin was bactericidal from 10 μg/ml and could release bactericidal concentrations over seven days, preventing biofilm formation. A concentration of 75 μg/ml of gentamicin in ABG showed the highest bactericidal effect up to day 7. On titanium disks, a significant bacterial reduction on ABG-gentamicin coated disks was observed when compared to both uncoated (mean 2-log reduction) and ABG-coated (mean 3-log reduction) disks, at days 3 and 7. ABG alone exhibited no antimicrobial or anti-biofilm properties. However, a concentration of 75 μg/ml gentamicin in ABG sustains release over seven days and significantly reduced biofilm formation. Its use as an implant coating in patients with a high risk of infection may prevent bacterial adhesion perioperatively and in the early postoperative period. Conclusion. ABG’s use as a carrier for stem cells was effective, as it supported cell growth. It has the potential to co-deliver compatible cells, drugs, and growth factors. However, ABG-gentamicin’s potential needs to be further justified using in vivo studies. Cite this article: Bone Joint Res 2020;9(12):848–856


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 20 - 20
4 Apr 2023
Gori M Giannitelli S Vadalà G Papalia R Zollo L Rainer A Denaro V
Full Access

Intraneural electrodes can be harnessed to control neural prosthetic devices in human amputees. However, in chronic implants we witness a gradual loss of device functionality and electrode isolation due to a nonspecific inflammatory response to the implanted material, called foreign body reaction (FBR). FBR may eventually lead to a fibrous encapsulation of the electrode surface. Poly(ethylene glycol) (PEG) is one of the most common low-fouling materials used to coat and protect electrode surfaces. Yet, PEG can easily undergo encapsulation and oxidative damage in long-term in vivo applications. Poly(sulfobetaine methacrylate) - poly(SBMA) - zwitterionic hydrogels may represent more promising alternatives to minimize the FBR due to their ultra-low fouling features. Here, we tested and compared the poly(SBMA) zwitterionic hydrogel coating with the PEG coating in reducing adhesion and activation of pro-inflammatory and pro-fibrotic cells to polyimide surfaces, which are early hallmarks of FBR. We aimed to coat polyimide surfaces with a hydrogel thin film and analysed the release of a model drug from the hydrogel. We performed hydrogel synthesis, mechanical characterization and biocompatibility analysis. Cell adhesion, viability and morphology of human myofibroblasts cultured on PEG- and hydrogel-coated surfaces were evaluated through confocal microscopy-based high-content analysis (HCA). Reduced activation of pro-inflammatory human macrophages cultured on hydrogels was assessed as well as the hydrogel drug release profile. Because of its high hydration, biocompatibility, low stiffness and ultra-low fouling characteristics the hydrogel enabled lower adhesion and activation of pro-inflammatory and pro-fibrotic cells vs. polystyrene controls, and showed a long-term release of the anti-fibrotic drug Everolimus. Furthermore, a polyimide surface was successfully coated with a hydrogel thin film. Our soft zwitterionic hydrogel could outperform PEG as more suitable coating material of neural electrodes for mitigating the FBR. Such poly(SBMA)-based biomaterial could also be envisioned as long-term delivery system for a sustained release of anti-inflammatory and anti-fibrotic drugs in vivo


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 74 - 74
1 Dec 2020
Köse N Bayrak ÇH Köse AA Sevencan A Toktaş AG Doğan A
Full Access

Orthopaedic and trauma implant related infection remains one of the major complications that negatively impact clinical outcome and significantly increase healthcare expenditure. Hydroxyapatite has been used for many years to increase implant osseointegration. Silver has been introduced into hydroxyapatite as an antimicrobial coating for orthopedic implants. This surface coatings can both increase tissue compatibility and prevent implant-related infections. We examined infection markers and blood silver values, liver and kidney function tests of 30 patients with of three groups of orthopedic implants, external fixators, intramedullary nails and hip replacements, coated with Ag + ion doped CaP based ceramic powder to determine safety and effectiveness of this dual-function coating. During 1 year follow-up, the pin sites were observed at the external fixator group, and wound areas for the proximal femoral nail and hip arthroplasty group at regular intervals. In addition, liver and kidney function tests, infection markers and blood silver values were checked in patients. In the external fixator group, only 4 out of 91 pin sites (%4.39) were infected. The wound areas healed without any problem in patients with proximal femoral nails and hip arthroplasty. There was no side effect suggesting silver toxicity such as systemic toxic side effect or argyria in any patient and blood silver level did not increase. Compared to similar patient groups in the literature, much lower infection rates were obtained (p = 0.001), and implant osseointegration was good. In patients with chronic infection, the implants were applied acutely after removing the primary implant and with simple debridement. Unlike other silver coating methods, silver was trapped in hydroxyapatite crystals in the ionic form, which is released from the coating during the process of osseointegration, thus, the silver was released into the systemic circulation gradually that showed antibacterial activity locally. We conclude that the use of orthopedic implants with a silver ion added calcium phosphate-based special coating is a safe method to prevent the implant-related infection. This work was supported by TUBİTAK Project Number 315S101


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 644 - 649
1 May 2011
Yonekura Y Miyamoto H Shimazaki T Ando Y Noda I Mawatari M Hotokebuchi T

A silver-containing hydroxyapatite (Ag-HA) coating has been developed using thermal spraying technology. We evaluated the osteoconductivity of this coating on titanium (Ti) implants in rat tibiae in relation to bacterial infection in joint replacement. At 12 weeks, the mean affinity indices of bone formation of a Ti, an HA, a 3%Ag-HA and a 50%Ag-HA coating were 97.3%, 84.9%, 81.0% and 40.5%, respectively. The mean affinity indices of bone contact of these four coatings were 18.8%, 83.7%, 77.2% and 40.5%, respectively. The indices of bone formation and bone contact around the implant of the 3%Ag-HA coating were similar to those of the HA coating, and no significant differences were found between them (bone formation, p = 0.99; bone contact, p = 0.957). However, inhibition of bone formation was observed with the 50%Ag-HA coating. These results indicate that the 3%Ag-HA coating has low toxicity and good osteoconductivity, and that the effect of silver toxicity on osteoconductivity depends on the dose