Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 19 - 19
1 Feb 2017
Arnholt C MacDonald D Lowell J Gilbert J Mihalko W Kurtz S
Full Access

Introduction. Previous studies of CoCr alloy femoral components for total knee arthroplasty (TKA) have identified 3. rd. body abrasive wear, and apparent inflammatory cell induced corrosion (ICIC) [1] as potential damage mechanisms. The association between observed surface damage on the femoral condyle and metal ion release into the surrounding tissues is currently unclear. The purpose of this study was to investigate the damage on the bearing surface in TKA femoral components recovered at autopsy and compare the damage to the metal ion concentrations in the synovial fluid. Methods. 12 autopsy TKA CoCr femoral components were collected as part of a multi-institutional orthopedic implant retrieval program. The autopsy components included Depuy Synthes Sigma Mobile Bearing (n=1) and PFC (n=1), Stryker Triathlon (n=1) and Scorpio (n=3), and Zimmer Nexgen (n=4) and Natural Knee (n=2). Fluoro scans of all specimens prior to removal was carried out to assure no signs of osteolysis or aseptic loosening were present. Third-body abrasive wear of CoCr was evaluated using a semi-quantitative scoring method similar to the Hood method [2]. ICIC damage was reported as location of affected area and confirmed using a digital optical microscope with 4000X magnification. Synovial fluid was aspirated from the joint capsule prior to removal of the TKA device. The synovial fluid was spun at 1600 rpm for 20 minutes in a centrifuge with the cell pellet removed. The supernatant was analyzed in 1 mL quantities for ICP-MS (inductively coupled plasma mass spectrometry) by Huffman Hazen Laboratories. Data was expressed as ppb. Results. Mild to severe damage (Damage Score ≥ 2) was observed on 92% of the components in at least one quadrant, with no severe damage (Damage Score = 4) observed. ICIC damage was observed on three components in three different regions (the posterior lateral, anterior, and medial bearing surface). These observations were confirmed with digital optical microscopy, where we observed as interconnecting pits and indentations with a spiraling or trailing region, consistent with prior observation of ICIC in retrievals (Figure 1). Cobalt was detected in 7 cases, however the metal levels were not as high as levels observed in patients with a failed joint replacement (Table 1). There was no correlation between the metal ion concentration and the damage score on the CoCr femoral condyle. Discussion. This study documents the damage mechanics and associated metallic release into the synovial fluid of “well-functioning” TKA components retrieved at autopsy. It has been suggested that ICIC damage is actually damage from electrocautery during surgery. However, we observed ICIC damage on autopsy retrievals in which the use of electrocautery is unlikely. The damage mechanisms observed on the autopsy TKA components were similar but less severe compared to mechanisms observed in long-term TKA components from revision surgery [1]. More research is needed to better understand the metal release from CoCr femoral components and periprosthetic tissue reactions in TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 12 - 12
1 Jan 2016
Al-Khateeb H Mahmud T Naudie D McCalden RW
Full Access

INTRODUCTION. The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized zirconium (Oxinium) has been introduced for use in both total hip arthroplasty (THA) and total knee arthroplasty (TKA). The aetiology of wear is multifactorial and includes adhesive, abrasive, third-body and fatigue wear mechanisms. Oxinium femoral components have demonstrated clear improvements in wear characteristics in-vitro. The purpose of this prospective study was to evaluate the mid-term (minimum 5 year) clinical and radiographic results and survivorship of the Genesis II™ knee implant system using an Oxinium femoral component. METHODS. Between January 2001 and December 2008, 382 Genesis II Oxinium (Smith & Nephew) primary total knee arthroplasties (TKA) (313 patients) were implanted at our institution. A comparison with a cohort of 317 patients (382 knees) who received a Genesis II knee implant using a ‘conventional’ cobalt-chrome (Co-Cr) femoral component was performed during the same time period. Prospective data was collected on all patients including demographics (age, BMI, diagnosis) as well as pre and postoperative clinical outcome scores (SF-12, WOMAC, and knee society clinical rating scores (KSCRS). Radiological analysis for evidence of osteolysis and loosening was performed in all patients. Comparisons were performed to determine differences between the Oxinium and Cobalt Chrome cohorts. Kaplan-Meier survival analysis was performed to show cumulative survival over time. Failure was defined as femoral component revision due to any cause. RESULTS. The mean age at time of surgery was 54.0 and 60.6 years respectively for the Oxinium and Co-Cr groups. The mean time from surgery was 8.13 +/− 2.03 years and 8.59 +/− 2.01 years for the Oxinium and Co-Cr groups respectively. Both groups demonstrated a statistically significant improvement in clinical outcome measures between pre, and post operative SF-12, WOMAC, and KSCRS scoring systems with no difference between two groups. There were a total of 15 revisions (infection: 8, stiffness: 2, aseptic loosening of patella component: 2, Aseptic loosening of the tibial component: 1, instability: 1, and one malaligned Femoral Component) in the Oxinium group. In the CoCr group there were a total of 9 revisions (Infection:5, aseptic loosening:1, instability: 1, stiffness: 1 and one patient revised for unexplained pain). Radiographically, no loosening was noted in the Oxinium group and all implants appeared well fixed. There was one case of loosening seen in the cobalt chrome group. The overall survival was 99.7 for both Oxinium and CoCr femoral components. Our study demonstrated no significant differences in validated clinical outcome scores and radiographic outcomes when comparing the Oxinium and Co-Cr femoral components. CONCLUSION. Despite the large numbers in our study, there were no statistically significant differences between Oxinium and CoCr femoral components at a minimum of five years follow up. While no clear benefits have been demonstrated, the use of an Oxinium femoral component demonstrated no adverse events at mid-term follow-up. Conventional Co-Cr femoral components remain the gold standard while long-term follow-up data is required to demonstrate the potential benefits of Oxinium


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 90 - 90
1 Apr 2019
Cowie RM Pallem N Briscoe A Fisher J Jennings LM
Full Access

Introduction. PEEK-OPTIMA™ has been considered as an alternative to cobalt chrome in the femoral component of total knee replacements. Whole joint wear simulation studies of both the tibiofemoral and patellofemoral joints carried out to date have shown an equivalent wear rate of UHMWPE tibial and patella components against PEEK and cobalt chrome (CoCr) femoral components. In this study, the influence of third body wear on UHMWPE-on-PEEK was investigated, tests on UHMWPE-on-CoCr were carried out in parallel to compare PEEK to a conventional femoral component material. Methods. Wear simulation was carried out in simple geometry using a 6-station multi-directional pin-on-plate simulator. 5 scratches were created on each PEEK and CoCr plate perpendicular to the direction of the wear test using a diamond stylus to produce scratches with a geometry similar to that observed in retrieved CoCr femoral components. To investigate the influence of scratch lip height on wear, scratches of approximately 1, 2 and 4µm lip height were created. Wear simulation of GUR 1020 UHMWPE pins (conventional, non-sterile) against the plates was carried out for 1 million cycles (MC) using 17g/l bovine serum as a lubricant using kinematic conditions to replicate the average contact pressure and cross-shear in a total knee replacement. Wear of UHMWPE pins was measured gravimetrically and the surface topography of the plates assessed using a contacting Form Talysurf. Wear factors of the pins against the scratched plates were compared to unscratched controls (0µm lip height). Minimum n=3 for each condition and statistical analysis carried out using ANOVA with significance taken at p<0.05. Results. For the control tests (0µm lip height), the wear factor of UHMWPE pins was similar (p=0.64) against PEEK and CoCr plates. Against CoCr, with an increasing lip height, an exponential increase in wear factor of UHMWPE pins was observed; for PEEK, with increasing lip height, the wear factor did not show an exponential increase. When articulated against the largest scratches, 4µm, the wear factor of UHMWPE was significantly higher against CoCr than PEEK (p=0.01). At the conclusion of the study, on the PEEK plates, a polishing effect of the pin against the plates was observed and in the area of the wear test, the lip height of the scratches was lower than pre-test values; for the CoCr plates, no change in lip height was measured after 1MC wear simulation. Conclusion. The exponential relationship between scratch lip height in CoCr and wear of UHMWPE has previously been described. However, the trend in the wear of UHMWPE was different when articulating against scratched PEEK compared to CoCr, with a significantly higher wear factor of UHMWPE against CoCr than PEEK at a scratch lip height of 4µm. This study suggests that the third body wear behaviour of this all-polymer knee replacement will be different to that of conventional implant materials


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 50 - 50
1 Apr 2019
Dharia M Wentz D Mimnaugh K
Full Access

INTRODUCTION. Tibiofemoral contact at the base of the articular surface spine in posterior-stabilized total knee arthroplasty (TKA) implants can lead to spine fracture [1]. Revision TKA implants also have an articular surface spine to provide sufficient constraint when soft tissues are compromised. While some revision TKA designs have metal reinforcement in the articular surface spine, others rely solely on a polyethylene spine. This study used finite element analysis (FEA) to study the effect of metal reinforcement on stresses in the spine when subjected to posteriorly directed loading. METHODS. Two clinically successful Zimmer Biomet revision TKA designs were selected; NexGen LCCK with metal reinforcement and all-poly Vanguard SSK. The largest sizes were selected. FEA models consisted of the polyethylene articular surface and a CoCr femoral component; LCCK also included a CoCr metal reinforcement in the spine. A 7° and 0° tibial slope, as well as 3° and 0.7° femoral hyperextension, were used for the LCCK and SSK, respectively. A posteriorly directed load was applied to the spine through the femoral component (Figure 1). The base of the articular surface was constrained. The articular surfaces for both designs are made from different polyethylene materials. However, for the purpose of this study, to isolate the effect of material differences on stresses, both were modeled using conventional GUR1050 nonlinear polyethylene material properties. Femoral component and metal reinforcement were modeled using linear elastic CoCr properties. Additionally, the LCCK was reanalyzed by replacing the metal reinforcement component with polyethylene material, in order to isolate the effect of metal reinforcement for an otherwise equivalent design. Frictional sliding contact was modeled between the spine and femoral/metal reinforcement components. Nonlinear static analyses were performed using Ansys version 17 software and peak von mises stresses in the spine were compared. RESULTS. Peak von mises stresses were predicted towards the base of the anterior aspect of the spine in both designs (Figure 2). In LCCK, the high stresses were also predicted on the medial and lateral edges of the anterior spine, matching the tibiofemoral contact (Figure 3). The LCCK with metal reinforcement design predicted 14% and 31% lower stress than LCCK and SSK all-poly designs. DISCUSSION. Clinical reports of spine fracture in TKA highlight the need for further understanding of the biomechanics of spine loading. Here, through comparison of two clinically successful devices, the effect of multiple design factors was quantified. Inclusion of metal reinforcement in the spine, as well as differences in the conforming geometry between the femoral component and the articular surface, resulted in a 31% decrease in polyethylene stress for the LCCK as compared to the all-poly SSK; of which only 16% was attributed to the metal reinforcement. Further improvements to articular surface design, as well as polyethylene material advances, have the potential to result in all-poly designs with strength characteristics equivalent to or exceeding those of designs with metal reinforcement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 23 - 23
1 May 2016
Arnholt C MacDonald D Kocagoz S Chen A Cates H Klein G Rimnac C Kurtz S
Full Access

Introduction. Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs. Methods. 308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening. Third-body abrasive wear of CoCr was evaluated using a semi-quantitative scoring method similar to the Hood method (Figure 1). A score of 1 had minimal damage and a score of 4 corresponded to damage covering more than 50% of the evaluated area. ICIC damage was reported as location of affected area. A white light interferometer (Zygo New View 5000) was also used to analyze the topography of severe damage of the bearing surface. For this analysis, three representative components from each cohort were selected and analyzed in three locations on the apex of the bearing surface. We analyzed the following roughness parameters: Ra, Rsk, and Rku. Results. On the CoCr bearing surface, the primary damage mechanisms were large scratches, small random scratches, and ICIC damage (Figure 2). Mild to severe damage (Damage Score ≥ 2) was observed in 96% of the short-term, 98% intermediate-term and 94% of long-term components. Severe damage (Damage Score = 4) was observed in 43% of the short-term, 50% intermediate-term and 56% of long-term components. ICIC damage observed on a portion of the bearing surface was detected in 43% of the short-term components, 30% of the intermediate-term components and 26% of the long term components. Apparent ICIC damage on the bearing and/or a non-bearing region of the component was observed in 85% of the short-term components, 75% of the intermediate-term components and 80of long-term TKA components. The Ra, Rsk, and Rku were similar between cohorts (Table 1). Discussion. Abrasive wear of the femoral components was frequently observed in retrieved contemporary femoral components for TKA, regardless of their implantation time, and can most likely be attributed to third body damage caused by bone or bone cement debris. The prevalence of severe CoCr damage scores was highest in the long-term cohort, while the appearance of ICIC damage was lowest in the long-term cohort. Surface roughness parameters were similar in all three cohorts suggesting that the mechanism for this damage is comparable throughout the first 15 years of service. Future work is necessary to quantify the in vivo release of CoCr from abrasive wear and corrosion mechanisms, and the effects of increased surface roughness on wear of the polyethylene counter face


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 94 - 94
1 Dec 2013
Kaddick C Streicher R
Full Access

As allergic reactions to implant wear are gaining more attention [4], the incorporation of ceramic materials to device design appears to be a promising development. In particular, ceramic femoral components of total knee replacements have been designed to produce less wear under standard [1] and adverse [5] implant conditions. Whereas the wear reduction effect of ceramics is generally accepted for hip implants, the corresponding effect for knee implants is not proven. Ezzet et al. reported a wear reduction of 42% for standard wear conditions [2] and of 55% for adverse wear conditions [3] when compared to a geometrically identical CoCr femoral component. In contrast to these findings, an analysis of the EndoLab® database has indicated wear rates of ceramic knee implants that are comparable to traditional low wear material couplings (Figure 1), and are within the range of clinically established devices. The purpose of this study was to directly compare two TKR designs, one fixed bearing and one mobile bearing, each made of traditional CoCr to one made of alumina matrix composite (BIOLOX®delta, CeramTec, Germany) ceramic material. The BPK-S Rotating Platform System (Peter-Brehm, Germany; Figure 2) and the MULTIGEN PLUS fixed bearing (Lima, Italy) were knee simulator wear tested according to ISO 14243-1 (2002). A total of three specimens plus one loaded soak control for each group (four groups in total) was subjected to 5 million standard gait cycles. The anterior-posterior (AP) and internal-external rotational (IE) motion of the implants resulting from the external load application of this force controlled test was recorded continuously. Wear was determined gravimetrically. The surface appearance of contact areas was analyzed by light microscopy and particle analysis was performed according to ISO 18129. For the mobile bearing groups, a mean wear rate of 2.47 mg per million cycles (StdDev. 0.38) was determined for the CoCr implant and of 1.10 mg per million cycles (StdDev. 0.46) for the BIOLOX®deltaimplant (Figure 3). The total AP and IE motion of the two groups did not differ. However, motion during stance phase was considerably higher for the ceramic group, indicating reduced frictional resistance (data not shown). For the fixed bearing groups, a mean wear rate of 12.01 mg per million cycles (StdDev. 3.28) was determined for the CoCr implant and of 1.78 mg per million cycles (StdDev. 0.40) for the BIOLOX®delta implant. Based upon the EndoLab® experience the ceramic total knee replacements tested perform as good as the best performing metallic total knee replacements. However it can be concluded that for the two implant systems tested the wear rate is reduced by more than 50% by using ceramic on polyethylene articulation when compared to an identical cobald crome design


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 303 - 303
1 Dec 2013
Herrera L Essner A Longaray J Kester M Bonutti P
Full Access

Demand for TKR surgery is rising, including a more diverse patient demographic with increasing expectations [1]. Therefore, greater efforts are being devoted to laboratory testing. As a result, laboratory testing may set a clinical performance presumption for surgeons and patients. For example, oxidized ZrNB (Oxinium) femoral components have been projected to show 85% less wear than CoCr femoral components in bench-top testing [2]. However, recent clinical data show no difference in outcomes between Oxinium® and CoCr for the same design [3]. While it does not show lagging peformance for the Oxinium components, it does call into question the predictive ability of simulation. To better understand the performance of these two materials, a non standardized simulator evaluation was conducted. One commercially available design (Legion PS) was evaluated with two variations of femoral component material (n = 3/material) Oxinium® and Cobalt Chromium. All testing was conducted using a 7.5 kGy moderately crosslinked UHMWPE (XLPE). A 6-station knee simulator was utilized to simulate stair-climbing kinematics. The lubricant used was Alpha Calf Fraction serum which was replaced every 0.5 million cycles for a total of 5 million cycles. Soak controls were used to correct for fluid absorption and statistical analysis was performed using the Student's t-test. Total wear rate results for the tibial inserts are shown in Figure 1. There was no statistical difference in volume loss (p = 0.8) or wear rate (p = 0.9) for the Oxinium® system when compared to the CoCrsystem under stair-climbing kinematics. Visual examination revealed typical wear scars and features on the condylar surfaces, including burnishing. These results corroborate the recent clinical data showing no difference between Oxinium® components and their CoCr analogs [3]. The kinematics used here are not a combination of normal level walking with stair-climbing conditions as was published originally for the Oxinium® material [2], but stair-climbing kinematics only. Even though the stair-climbing profile utilized here does not represent standardized kinematics, it provided results that are in line with clinical observations for these femoral materials. Logic suggests that a combined duty cycle is more representative of patient behavior so there must be additional test factors contributing to the prediction previously reported. The goal of bench top testing is to simulate actual clinical performance so test models must be validated as clinicaly relevant in order to be predictive. Furthermore, the results of this test indicate that the different femoral materials evaluated in this study do not alter the wear characteristics of this TKR. This is further supported by a similar previous study showing the relative contribution of design versus materials in terms of wear behavior [4]. The main determination comes from clinical evidence, and as it has been demonstrated by Kim, et al [3], there is no significant difference in the clinical results of the two TKR devices analyzed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 105 - 105
1 May 2012
Pinczewski L Miller C Salmon L Williams H Walsh W
Full Access

The aim of this study was to compare the outcome of cemented TKR using either oxidized zirconium (oxinium) or cobalt chrome (CoCr) femoral components in patients undergoing simultaneous bilateral TKR. Patients involved in the study received one of each prosthesis, thereby acting as their own control. The hypothesis was that there would be no difference in the clinical and radiographic outcome between the two prosthetic materials. Forty consecutive patients who were undergoing bilateral Genesis ll TKR consented to participate in the study. Patients were assessed preoperatively, at five days, six weeks and one, two and five years, postoperatively. The outcome measures included the KOOS, Knee Society Score, BOA Patient Satisfaction Scale, and radiographs at six weeks and one, two and five years. In two patients polyethlylene exchange was performed at 56 months from surgery during patellofemoral resurfacing. The four retrieved polyethylene liners were studied for wear with the aid of a stereo zoom microscope and an environmental scanning electron microscope (ESEM). Both the patients and the all examiners were blinded as to the prosthesis type throughout the study. Forty patients (80 knees) were included in the study. At five years, three patients were deceased and two had developed senile dementia. No patients were lost to follow up. At five years from surgery the CoCr knee was preferred by 41% of patients compared to 13% who preferred the Oxinium knee (p=0.009). There was no significant difference in range of motion between the two prosthesis at five days, six weeks or one, two and five years. There were also no significant differences between the two prostheses in any of the other variables assessed. The four retrieved polyethylene inserts showed similar patterns of wear in terms of both wear types and patterns under examination with both the stereo zoom and scanning electron microscope with no clear differences between CoCr and Oxinium bearing against the polyethlylene. There was no difference in the grade or incidence of radiographic lucencies between the two prosthesis at five years. At five years after surgery the only significant difference between the Genesis II Oxinium prosthesis and the CoCr prosthesis was a subjective preference for the CoCr prosthesis by a higher proportion of patients. There were no unexpected complications associated with the use the Oxinium femoral implants. In the four retrieved polyethylene liners, no significant differences were identified between the two prosthesis materials in terms of detectable wear type and patterns. Continued follow up of this cohort is planned to establish whether Oxinium femoral implants have an improved survivorship compared to CoCr femoral component in total knee replacement to warrant the additional cost


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 99 - 99
1 Sep 2012
Luyckx J Verlinden C Vanbiervliet J Labey L Innocenti B Leuven J Vandenneucker H
Full Access

Introduction. Malrotation of the femoral component is a cause of patellofemoral maltracking after TKA. Its precise effect on the patellofemoral (PF) mechanics has not been well quantified. The aim of this study was to investigate the effect of malrotation of the femoral component on PF initial contact area, initial contact pressure and wear after 4 million full gait cycles in TKA using a knee simulator. Moreover, the influence of the counterface material (CoCr or OxZr) on PF wear was also investigated. Materials & Methods. Femoral components (FCs) were cemented onto specially designed fixtures, allowing positioning of the FC in different angles of axial rotation. Patellar buttons and FCs were then mounted in a Prosim knee simulator. Patellofemoral contact mechanics. Seven axial rotation configurations were tested: neutral (FC parallel to the epicondylar axis), 2.5° endo- and exorotation, 5° endo- and exorotation and 7.5° endo- and exorotation. Patellar contact location, contact area and contact pressure were measured dynamically during 20 gait cycles with a Tekscan sensor covering the patella collecting data at a rate of 100 frames per second. Patellofemoral wear. For three alignments (neutral, 5° endo- and exorotation), a PF wear test of 4 million cycles in bovine serum (diluted to 40%) was done with three CoCr and three OxZr components on conventional ultra-high molecular weight polyethylene (UHMWPE, density: 0.93mg/mm. 3. ). Every 0.5 million cycles the test lubricant was replaced, the patellar samples were cleaned and dried and polyethylene wear was measured gravimetrically. A linear regression model was used to calculate the wear rate of each patellar sample. Aggregate wear rates were determined for each test condition by pooling the measurements of all three patellar samples. Results. For all six endorotation and exorotation configurations, the contact area was significantly lower and the contact pressure significantly higher than the neutral position (p < 0.001, Figs 1 and 2). In the patellofemoral wear test, the highest average wear rate was found in the group of endorotated CoCr femoral components (0.54 mm. 3. /Mcycle), but this is still only 11% of a typical tibiofemoral wear rate with the same CoCr component (5 mm. 3. /Mcycle). The following trends in the average wear rates could be observed: the average wear rate for CoCr (0.34 mm. 3. /Mcycle) was higher than for OxZr (0.19 mm. 3. /Mcycle) and the average wear rate for 5° endorotation (0.35 mm. 3. /Mcycle) was higher than for 5° exorotation (0.21 mm. 3. /Mcycle) and neutral alignment (0.23 mm. 3. /Mcycle) (Figs 3 and 4). None of these differences reached statistical significance (p=0.05), though. Discussion. Our results indicate that both internally and externally malrotated femoral components significantly decrease contact areas and significantly increase contact pressures in the patellofemoral joint. These significant changes in contact pressure didn't translate in significant changes in wear, however. Overall, patellofemoral wear is very small compared to tibiofemoral wear, in all the configurations that we investigated. Based on our results, we can conclude that clinical problems with patellar maltracking after femoral component malrotation seem not to be related to increased wear, but rather to pain and patellar instability


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 143 - 143
1 Sep 2012
Korduba L Loving L Klein R De Luise M Patel A Kester M
Full Access

INTRODUCTION. Many studies have looked at the effects of titanium tibial baseplates compared to cobalt chrome baseplates on backside wear. However, the surface finish of the materials is usually different (polished/unpolished) [1,2]. Backside wear may be a function not only of tray material but also of the locking mechanism. The purpose of this study was to evaluate the wear performance of conventional polyethylene inserts when mated with titanium tibial trays or cobalt chrome tibial trays that both have non-polished topside surfaces. MATERIALS AND METHODS. Three titanium (Ti) trays were used along with three cobalt chrome (CoCr) trays. The Ti trays underwent Type II anodization prior to testing. All trays were Triathlon® design (Stryker Orthopaedics, Mahwah, NJ). Tibial inserts were manufactured from GUR 1020 conventional polyethylene then vacuum/flush packaged and sterilized in nitrogen (30 kGy). Appropriate sized CoCr femoral components articulated against the tibial inserts (Triathlon®, Stryker Orthopaedics, Mahwah, NJ). Surface roughness of the tibial trays was taken prior to testing using white light interferometry (Zygo Corp, Middlefield, CT). A 6-station knee simulator (MTS, Eden Prairie, MN) was used for testing. Two phases were conducted. The first phase used a normal walking profile, as dictated by ISO 14243-3 [3]. The second phase used waveforms created specifically for stair climbing kinematics. Testing was conducted at a frequency of 1 Hz for 2 million cycles for each test with a lubricant of Alpha Calf Fraction serum (Hyclone Labs, Logan, UT) diluted to 50% with a pH-balanced 20-mMole solution of deionized water and EDTA (protein level = 20 g/l) [4]. The serum solution was replaced and inserts were weighed for gravimetric wear at least every 0.5 million cycles. Standard test protocols were used for cleaning, weighing and assessing the wear loss of the tibial inserts [5]. Soak control specimens were used to correct for fluid absorption with weight loss data converted to volumetric data (by material density). Statistical analysis was performed using the Student's t-test (p<0.05). RESULTS. White light interferometry measurements (Figure 1) showed a significant difference in surface roughness between the Ti and CoCr tibial trays (p < 0.01). Figure 2 displays the results of wear testing after 2 million cycles for walking and stair climbing kinematics and showed no significant difference in wear rate between the two tibial trays for either test. The large standard deviation for the CoCr trays during stair climbing kinematics is due to one outlier that had 60% higher wear than the remaining two stations. Without this station, the average of the remaining two CoCr stations was 7.6 mm. 3. /mc, which was similar to the average obtained using Ti tibial trays. Figure 3 shows the backside surfaces of the polyethylene inserts after 2 million cycles using the stair climbing kinematics. Visually, the inserts mated with the Ti trays showed less of a stenciling effect that those mated with CoCr trays. The location of the stenciled area corresponded to the location of the femoral condyle during the loading cycle. DISCUSSION. Although Ti has different material properties than CoCr, the results of this study show that the wear performance was not adversely affected when Ti tibial trays were substituted for standard CoCr tibial trays under normal walking and stair climbing kinematics. Even though there are differences between the two materials, the documented wear was not significantly different possibly owing to the specific locking mechanism tested