Advertisement for orthosearch.org.uk
Results 1 - 20 of 38
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1021 - 1026
1 Sep 2004
Matsui Y Mirza SK Wu J Carter B Bellabarba C Shaffrey CI Chapman JR Eyre DR

Two collagen type IX gene polymorphisms that introduce a tryptophan residue into the protein’s triple-helical domain have been linked to an increased risk of lumbar disc disease. To determine whether a particular subset of symptomatic lumbar disease is specifically associated with these polymorphisms, we performed a prospective case-control study of 107 patients who underwent surgery of the lumbar spine. Patients were assigned to one of five clinical categories (fracture, disc degeneration, disc herniation, spinal stenosis without spondylolisthesis and spinal stenosis with spondylolisthesis) based on history, imaging results, and findings during surgery. Of the 11 tryptophan-positive patients, eight had spinal stenosis with spondylolisthesis and three had disc herniation. The presence of the tryptophan allele was significantly associated with African-American or Asian designation for race (odds ratio 4.61, 95% CI 0.63 to 25.35) and with the diagnosis of spinal stenosis with spondylolisthesis (odds ratio 6.81, 95% CI 1.47 to 41.95). Our findings indicate that tryptophan polymorphisms predispose carriers to the development of symptomatic spinal stenosis associated with spondylolisthesis which requires surgery


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 26 - 26
1 Oct 2022
Bell J Owen D Meek K Terrill N Sanchez-Weatherby J Le Maitre C
Full Access

Background. An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the annulus fibrosus (AF), which is hypothesized to induce a cascade of cellular changes leading to degeneration. However, there is limited understanding of the structural relationship between the NP and AF at this interface and particularly response to load. Here, X-ray scattering is utilised to provide hierarchical morphometric information of collagen structure across the IVD, especially the interface region under load. Methodology. IVDs were imaged using the I22 SAXS/WAXS beamline at Diamond Light Source. Peaks associated with the D-banded structure of collagen fibrils were fitted to quantify their azimuthal distribution, as well the magnitude and direction of internal strains under static and applied strain (0–20%). Results. IVD tissue regions exhibited structural “AF-like” and “NP-like” fingerprints. Demonstrating high internal strains on collagen fibres particularly within the NP region of the disc. AF and NP regions showed distinct collagen orientation and internal strains with an apparent lack of bracing structure seen at the interface between the differential mechanical tissues. X-ray scattering under tensile strain provided structural information at high resolution, with clear differences observed between normal and degenerate discs under load. Conclusion. X ray scattering has been utilised to develop an improved understanding of collagen structure across the intervertebral disc which can be utilised to gain an increased understanding of load induced propagation of micro fissures and disc degeneration. Conflict of Interest: No conflict of interest. Funding: BioPro Network, UCL for funding this study through support from the MRC (MR/R025673/1)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2–related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Conclusion. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors. Cite this article: Bone Joint Res 2023;12(3):202–211


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 24 - 24
1 Oct 2019
Emanuel K Mader K Peeters M Kingma I Rustenburg C Vergroesen P Sammon C Smit T
Full Access

Purpose of study and background. Mechanical overloading initiates intervertebral disc degeneration, presumably because cells break down the extracellular matrix (ECM). We used Fourier Transform Infrared Spectroscopy (FTIR) imaging to identify, visualize and quantify the ECM and aimed to identify spectroscopic markers for early disc degeneration. Methods and Results. In seven goats, one disc was injected with chondroitinase ABC (mild degeneration) and after three months compared to control. Ex vivo, 50 caprine discs received physiological loading (50–150N) or overloading (50–400N) in a loaded disc culture system. To determine whether ECM degeneration is due to cell activity, half of the discs was subjected to freeze-thaw cycles. Spectroscopic images were collected at 1000–1300 cm. −1. and analyzed using multivariate curve resolution analysis. In vivo, less proteoglycan was found in the degenerated group (p<0.05), especially in the nucleus. Collagen content was increased in the nucleus and anterior annulus, and had higher entropy (p<0.01), indicating matrix disorganization. In the ex vivo experiment, the proteoglycan/collagen ratio was decreased (p<0.05) in the vital group and there was an increase in collagen entropy (p<0.05). A significant interaction between loading and vitality was found in the amount of collagen (p<0.05), but not in the entropy. Conclusion. Three weeks of mild overloading causes measurable changes in the extracellular matrix. Increased collagen entropy indicates that remodeling of collagen is a first step into disc degeneration. We could not confirm, however, that increase in entropy was due to cell activity. FTIR imaging allows more detailed investigation of early disc degeneration than traditional measures. There are no conflicts of interest. Partially funded by Dutch Arthritis Funds, personal grant KSE


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2019
Owen D Snuggs J Partridge S Sammon C Le Maitre C
Full Access

Introduction. We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue. Methods. IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular phenotype and matrix deposition. Results. Increased collagen deposition was seen in tissue explants injected with Bgel, with evidence of elevated native cell migration towards the hydrogel. Increased collagen staining was seen in explants injected with Bgel together with MSCs. Alizarin red staining was utilised to investigate calcium deposition. Tissue explants, in the absence of Bgel, showed limited calcium deposition. This was increased in hydrogel-treated samples, with large clumping regions in the tissue that was injected with Bgel and MSCs. Conclusion. The injection of our synthetic hydrogel into disc tissue explants increased the amount of collagen and calcium deposition. This was further enhanced by the incorporation of MSCs, suggesting the promotion of bone formation. Current work is investigating phenotypic markers for bone formation within these tissues. CS and CLM have a patent on the hydrogel system described in this abstract. Funded by EPSRC and Grow MedTech


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 17 - 17
1 Oct 2019
Snuggs J Thorpe A Partridge S Chiverton N Cole A Michael A Sammon C Le Maitre C
Full Access

Purpose of study and background. We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or bone formation which could be utilized in spinal fusion (Bgel). As there are multiple sources of mesenchymal stem cells (MSCs), this study investigated the incorporation of patient matched hMSCs derived from adipose tissue (AD) and bone marrow (BM) to determine their ability to differentiate within both hydrogel systems under different culture conditions. Methods and Results. Human fat pad and bone marrow derived MSCs were isolated from femoral heads of patients undergoing hip replacement surgery for osteoarthritis with informed consent. MSCs were encapsulated into either NPgel or Bgel and cultured for up to 6 weeks in 5% (NPgel) or 21% (Bgel) O. 2. Histology and immunohistochemistry was utilized to determine phenotype. Both fat and bone marrow derived MSCs, were able to differentiate into both cell lineages. NPgel culture conditions increased expression of matrix components such as collagen II and aggrecan and NP phenotypic markers FOXF1 and PAX1, whereas Bgel induced expression of collagen I and osteopontin, indicative of osteogenic differentiation. Conclusion. NPgel and Bgel were able to differentiate patient derived MSCs from different sources into both NP and osteogenic lineages, which may give rise to novel treatment strategies for IVD degeneration and spinal fusion, enabling choice for cell source according to patients' circumstances and needs. C Le Maitre and C Sammon hold a patent for the hydrogel described. Funded by MRC and Versus Arthritis


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims

Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease.

Methods

We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 315 - 322
1 Mar 2023
Geere JH Swamy GN Hunter PR Geere JL Lutchman LN Cook AJ Rai AS

Aims

To identify the incidence and risk factors for five-year same-site recurrent disc herniation (sRDH) after primary single-level lumbar discectomy. Secondary outcome was the incidence and risk factors for five-year sRDH reoperation.

Methods

A retrospective study was conducted using prospectively collected data and patient-reported outcome measures, including the Oswestry Disability Index (ODI), between 2008 and 2019. Postoperative sRDH was identified from clinical notes and the centre’s MRI database, with all imaging providers in the region checked for missing events. The Kaplan-Meier method was used to calculate five-year sRDH incidence. Cox proportional hazards model was used to identify independent variables predictive of sRDH, with any variable not significant at the p < 0.1 level removed. Hazard ratios (HRs) were calculated with 95% confidence intervals (CIs).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 6 - 6
1 Feb 2018
Richardson S Hodgkinson T White L Shakesheff K Hoyland J
Full Access

Background. Stem cell therapy has been suggested as a potential regenerative strategy to treat IVD degeneration and GDF6 has been shown to differentiate adipose-derived stem cells (ASCs) into an NP-like phenotype. However, for clinical translation, a delivery system is required to ensure controlled and sustained GDF6 release. This study aimed to investigate the encapsulation of GDF6 inside novel microparticles (MPs) to control delivery and assess the effect of the released GDF6 on NP-like differentiation of human ASCs. Methods. GDF6 release from PLGA-PEG-PLGA MPs over 14 days was determined using BCA and ELISA. The effect of MP loading density on collagen gel formation was assessed through SEM and histological staining. ASCs were cultured in collagen hydrogels for 14 days with GDF6 delivered exogenously or via microspheres. ASC differentiation was assessed by qPCR for NP markers, glycosaminoglycan production (DMMB) and immunohistochemistry. Results. GDF6 release from MPs was controlled over 14 days equivalently to exogenous addition. SEM and histology confirmed that MPs were distributed throughout gels and that gel formation was not disrupted. In 3D cultures, GDF6 release from microspheres elicited equivalent ASC differentiation and NP-like matrix formation compared to exogenous delivery in media, indicating activity was not affected by MP encapsulation. Conclusions. This study demonstrates the effective encapsulation and controlled delivery of GDF6, which was able to maintain its activity and induce ASC differentiation into an NP-like phenotype and production of an NP-like ECM. Delivery of GDF6 microspheres in combination with ASCs is a promising strategy for IVD regeneration and treatment of back pain. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2018
Thorpe A Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of Low back pain (LBP). We have reported an injectable hydrogel (NPgel), which following injection into bovine NP explants, integrates with NP tissue and promotes NP cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here we investigated the injection of NPgel+MSCs into bovine NP explants under degenerate culture conditions to mimic the in vivo environment of the degenerate IVD. Methods. hMSCs were incorporated within liquid NPgel and injected into bovine NP explants alongside controls. Explants were cultured for 6 weeks under hypoxia (5%) with ± calcium 5.0mM CaCl. 2. or IL-1β individually or in combination to mimic the degenerate microenvironment. Cell viability was assessed by caspase 3 immunohistochemistry. Histological and immunohistochemical analysis was performed to investigate altered matrix synthesis and matrix degrading enzyme expression. Results. CFSe positive hMSCs were identified in all NPgel injected explants and cell viability was maintained. The NPgel integrated with NP tissue and hMSCs produced matrix components: aggrecan, collagen type II and chondroitin sulphate in standard and degenerate culture conditions. Increased cellular immunopositivty for aggrecan and collagen type II as well as decreased cellular immunopositivity for degrading enzyme expression was observed within NP tissue removed from the injection site. Conclusion. MSCs incorporated within NPgel could be used to regenerate the NP and restore the healthy NP phenotype of degenerate NP cells as a treatment strategy for LBP. We are currently investigating the survival and differentiation capacity of hMSCs delivered via the NPgel into degenerate human NP explants and thus ascertain the future clinical success of this therapy. Conflicts of Interest: None. Funding: BMRC, MERI Sheffield Hallam University


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 35 - 35
1 Feb 2018
Richardson S Hodgkinson T Shen B Diwan A Hoyland J
Full Access

Background. Signalling by growth differentiation factor 6 (GDF6/BMP13) has been implicated in the development and maintenance of healthy NP cell phenotypes and GDF6 mutations are associated with defective vertebral segmentation in Klippel-Feil syndrome. GDF6 may thus represent a promising biologic for treatment of IVD degeneration. This study aimed to investigate the effect of GDF6 in human NP cells and critical signal transduction pathways involved. Methods. BMP receptor expression profile of non-degenerate and degenerate human NP cells was determined through western blot, immunofluorescence and qPCR. Phosphorylation statuses of Smad1/5/9 and non-canonical p38 MAPK and Erk1/2 were assessed in the presence/absence of pathway blockers. NP marker and matrix degrading enzyme gene expression was determined by qPCR following GDF6 stimulation. Glycosaminoglycan and collagen production were assessed through DMMB-assay and histochemical staining. Results. NP cells expressed all GDF6 receptor subunits, with receptor subunits BMPR-1A and BMPR2 displaying the highest expression and highest binding affinity. GDF6 stimulation significantly upregulated the expression of NP specific marker genes but had no significant effect on the expression of matrix degrading enzymes. Total glycosaminoglycan and collagen production was also significantly increased following GDF6 stimulation. Smad1/5/9, p38 MAPK and Erk1/2 pathways were phosphorylated following GDF6 stimulation and could be effectively blocked. Conclusions. These findings enhance our understanding of both the effects of GDF6 in NP cells and the mechanisms of GDF6 signal transduction that are critical to promote NP phenotype and cellular function. This knowledge is important for the effective use of GDF6 as a therapeutic molecule for treatment of IVD degeneration. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2019
Snuggs J Rustenberg C Emanuel K Partridge S Sammon C Smit T Le Maitre C
Full Access

Purpose of study and background. Low back pain affects 80% of the population at some point in their lives with 40% of cases attributed to intervertebral disc (IVD) degeneration. A number of potential regenerative approaches are under investigation worldwide, however their translation to clinic is currently hampered by an appropriate model for testing prior to clinical trials. Therefore, a more representative large animal model for IVD degeneration is needed to mimic human degeneration. Here we investigate a caprine IVD degeneration model in a loaded disc culture system which can mimic the native loading environment of the disc. Methods and Results. Goat discs were excised and cultured in a bioreactor under diurnal, simulated-physiological loading (SPL) conditions, following 3 days pre load, IVDs were degenerated enzymatically for 2hrs and subsequently loaded for 10 days under physiological loading. A PBS injected group was used as controls. Disc deformation was continuously monitored and changes in disc height recovery quantified using stretched-exponential fitting. Histological staining was performed on caprine discs to assess extracellular matrix production and immunohistochemistry performed to determine expression of catabolic protein expression. The injection of collagenase and cABC induced mechanical behavior akin to that seen in human degeneration. A decrease in collagens and glycosaminoglycans (GAGs) was seen in enzyme injected discs, which was accompanied by increased cellular expression for degradative enzymes and catabolic cytokines. Conclusion. This model provides a reproducible model of IVD degeneration which mimics human degeneration. This model allows the testing of biomaterials and other potential treatments of IVD degeneration on a scale more representative of the human disc. There are no conflicts of interest. Funded by MRC and Versus Arthritis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 22 - 22
1 Sep 2019
Thorpe A Partridge S Snuggs J Vickers L Charlton F Cole A Chiverton N Sammon C Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). We have developed an injectable hydrogel (NPgel), which following injection into bovine IVD explants, integrates with IVD tissue and promotes disc cell differentiation of delivered mesenchymal stem cells (MSCs) without growth factors. Here, we investigated the injection of NPgel+MSCs into IVD explants under degenerate culture conditions. Methods and Results. The NPgel integrated with bovine and human degenerate Nucleus Pulposus (NP) tissue and hMSCs produced matrix components: aggrecan, collagen type II and chondroitin sulphate in standard and degenerate culture conditions. Significantly increased cellular immunopositivty for aggrecan was observed within native NP cells surrounding the site where NPgel+MSCs were injected (P≤0.05). In NP explants a significant decrease in catabolic factors were observed where NPgel+MSCs was injected in comparison to controls. Conclusions. In agreement with our previous findings NPgel was sufficient alone to induce NP cell differentiation of MSCs following injection into NP tissue explants. Here, we have shown that viability is maintained even in degenerate conditions. Injection of NPgel with MSCs increased aggrecan expression and reduced MMP3 and IL-1R1 expression by native NP cells. The NPgel with incorporated MSCs has the potential to regenerate the NP and provide mechanical support, whilst reducing the catabolic phenotype of degenerate NP cells, as a treatment strategy for IVD degeneration. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 18 - 18
1 Feb 2014
Lama P Claireaux H Flower L Harding∗ I Dolan P Adams M
Full Access

Introduction. Physical disruption of the extracellular matrix influences the mechanical and chemical environment of intervertebral disc cells. We hypothesise that this can explain degenerative changes such as focal proteoglycan loss, impaired cell-matrix binding, cell clustering, and increased activity of matrix-degrading enzymes. Methods. Disc tissue samples were removed surgically from 11 patients (aged 34–75 yrs) who had a painful but non-herniated disc. Each sample was divided into a pair of specimens (approximately 5mm. 3. ), which were cultured at 37°C under 5% CO. 2. One of each pair was allowed to swell, while the other was restrained by a perspex ring. Live-cell imaging was performed with a wide field microscope for 36 hrs. Specimens were then sectioned at 5 and 30 μm for histology and immunofluorescence using a confocal microscope. Antibodies were used to recognise free integrin receptor α5β1, matrix metalloprotease MMP-1, and denatured collagen types I-III. Proteoglycan content of the medium, analysed using the colorimetric DMMB assay, was used to assess tissue swelling and GAG loss. Constrained/unconstrained results were compared using matched-pair t-tests. Results. Time-lapse cinematography revealed small cell movements in unconstrained specimens, for up to 12 hrs. By 36 hrs, unconstrained (free swelling) samples showed greater: loss of GAG's (p<0.003), loss of integrin binding (p<0.02), synthesis of MMP-1 (p<0.03), and collagen denaturation (p<0.009). Cell clustering was evident in all tissues after 36 hrs. Conclusion. Swelling of disrupted disc tissue disturbs cell-matrix binding, increases matrix degradation, and allows increased proteoglycan loss. This sequence of events could follow disc injury or herniation in-vivo


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2018
Thorpe A Freeman C Farthing P Callaghan J Hatton P Brook I Sammon C Le Maitre C
Full Access

Background. We have reported an injectable L-pNIPAM-co-DMAc hydrogel with hydroxyaptite nanoparticles (HAPna) which promotes mesenchymal stem cell (MSC) differentiation to bone cells without the need for growth factors. This hydrogel could potentially be used as an osteogenic and osteoconductive bone filler of spinal cages to improve vertebral body fusion. Here we investigated the biocompatibility and efficacy of the hydrogel in vivo using a proof of concept femur defect model. Methods. Rat sub-cut analysis was performed to investigate safety in vivo. A rat femur defect model was performed to evaluate efficacy. Four groups were investigated: sham operated controls; acellular L-pNIPAM-co-DMAc hydrogel; acellular L-pNIPAM-co-DMAc hydrogel with HAPna; L-pNIPAM-co-DMAc hydrogel with rat MSCs and HAPna. Following 4 weeks, defect site and organs were histologically examined to determine integration, repair and inflammatory response, as well as Micro-CT to assess mineralisation. Results. No inflammatory reactions or toxicity were seen in any animal. Enhanced bone healing was observed in aged exbreeder female rats where hydrogel was injected with increased deposition of collagen type I. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and bone formation was observed within all hydrogel systems investigated. Conclusion. This novel hydrogel is biocompatible, facilitates migration of cells, promotes increased bone formation and integrates with surrounding bone. This system could be injected to fill spaces within and surrounding spinal cages to aid in cage fixation and spinal fusion without the need for harvesting of bone autografts, thus reducing operative risk and surgical cost. Conflicts of Interest: None. Source of Funding: BMRC, MERI Sheffield Hallam University