Total hip arthroplasty (THA) is an effective treatment for symptomatic hip osteoarthritis (OA). While computer-navigation technologies in total knee arthroplasty show survivorship advantages and are widely used, comparable applications within THA show far lower utilisation. Using national registry data, this study compared patient reported outcome measures (PROMs) in patients who underwent THA with and without
Total hip arthroplasty (THA) is an effective treatment for symptomatic hip osteoarthritis (OA). Computer-navigation technologies in total knee arthroplasty show evidence-supported survivorship advantages and are used widely. The aim of this study was to determine the revision outcome of hip commercially available navigation technologies. Data from the Australian Orthopaedic Association National Joint Replacement Registry from January 2016 to December 2020 included all primary THA procedures performed for osteoarthritis (OA). Procedures using the Intellijoint HIP® navigation were identified and compared to procedures inserted using ‘other’
Introduction.
Introduction. Real-time tracking of surgical tools has applications for assessment of surgical skill and OR workflow. Accordingly, efforts have been devoted to the development of low-cost systems that track the location of surgical tools in real-time without significant augmentation to the tools themselves. Deep learning methodologies have recently shown success in a multitude of
Introduction. Stryker
Scaphoid non-union results the typical humpback deformity, pronation of the distal fragment, and a bone defect in the non-union site with shortening. Bone grafting, whether open or arthroscopic, relies on fluoroscopic and direct visual assessment of reduction. However, because of the bone defect and irregular geometry, it is difficult to determine the precise width of the bone gap and restore the original bone length, and to correct interfragmentary rotation. Correction of alignment can be performed by computer-assisted planning and intraoperative guidance. The use of
Introduction.
Soft tissue gaps created in total knee replacement rely on the creation of symmetrical spaces that accommodate prosthetic implants. We studied a new custom surface registration protocol in a
Background. Mechanics and kinematics of the knee following total knee replacement are related to the mechanics and kinematics of the normal knee. Restoration of neutral alignment is an important factor affecting the long-term results of total knee replacement. Tibial cut is a vital and crucial step in ensuring adequate and appropriate proximal tibial resection, which is essential for mechanical orientation and axis in total knee replacement. Tibial cut must be individually reliable, reproducible, consistent and an accurate predictor of individual anatomical measurements. Conventional tibial cuts of tibia with fixed measurements cannot account for individual variations. While
Introduction. Two aspects are very important for knee joint replacement – restoration of biomechanical limb axis and achieving ligaments balance.
Introduction. The incorporation of
Computer-assisted navigation during total knee replacement has been advocated to improve component alignment and hence reduce failure rates and improve quality of life. The technique involves the placement of trackers via pins placed in both the femur and tibia throughout the surgery. It has been proposed that complication rates are higher in knee arthroplasty when
Purpose. This meta-analysis was designed to evaluate the effects of
Background. Bone preservation is desired for future revision in any knee arthroplasty. There is no study comparing the difference in the amount of bone resection when soft tissue balance is performed with or without
Background. Limb length discrepancy after total hip replacement is one of the possible complications of suboptimal positioning of the implant and cause of patients dissatisfaction.
The advantages of
Introduction. Restoration of normal hip biomechanics is vital for success of total hip arthroplasty (THA). This requires accurate placement of implants and restoration of limb length and offset. The purpose of this study was to assess the precision and accuracy of
The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of
Background. The literature quotes up to 20% dissatisfaction rates for total knee replacements (TKR). Swedish registry and national joint registry of England and Wales confirm this with high volumes of patients included. This dissatisfaction rate is used as a basis for improving/changing/modernising knee implant designs by major companies across the world. Aim. We aimed to compare post TKR satisfaction rates for navigated and non navigated knees. Methods. This was a retrospective analysis of prospectively collected data. All patients undergo comprehensive preoperative evaluation and comprehensive consent process and same rehabilitation protocols are followed as standard practice. Two groups were established depending on whether surgery was performed with or without
Introduction. Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA. Methods and Materials. We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests). Results. All 72 patients (48% female; 52% male) were included in the final analysis [Fig. 2]. Mean age of patients undergoing revision THA was 70.4 ± 11.2 years. Mean BMI was 26.4 ± 5.2 kg/m. 2. The most common indications for revision THA were instability (31%), aseptic loosening (29%), osteolysis/eccentric wear (18%), infection (11%), and miscellaneous (11%). During revision procedure, polyethylene component was most commonly changed (46%), followed by femoral head (39%), and acetabular component (15%). At 3 months, 1 year, and final follow-up, there were no dislocations among all study patients (0%). Compared to preoperative dislocation values, there was a significant reduction in the rate of dislocation with the use of computer-assisted hip navigation (31% vs. 0%; p<0.05). Discussion. Our study demonstrates a significant reduction in the rate of dislocation following revision THA with the use of