Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 284 - 284
1 Dec 2013
Delport H Labey L Sloten JV Bellemans J
Full Access

Today controversy exists whether restoration of neutral mechanical alignment should be attempted in all patients undergoing TKA. The restoration of constitutional rather than neutral mechanical alignment may in theory lead to a more physiological strain pattern in the collateral ligaments, and could therefore potentially be beneficial to patients. It was therefore our purpose to measure collateral ligament strains during three motor tasks in the native knee and compare them with the strains noted after TKA in different postoperative alignment conditions. Six cadaver specimens were examined using a validated knee kinematics rig under physiological loading conditions. The effect of coronal malalignment was evaluated by using custom made tibial implant inserts in order to induce different alignment conditions. The results indicated that after TKA insertion the strains in the collateral ligaments resembled best the preoperative pattern of the native knee specimens when constitutional alignment was restored. Restoration to neutral mechanical alignment was associated with greater collateral strain deviations from the native knee. Based upon this study, we conclude that restoration of constitutional alignment during TKA leads to more physiological periarticular soft tissue strains during loaded as well as unloaded motor tasks


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 42 - 42
1 Aug 2017
Gustke K
Full Access

Robotic arm-assisted total knee replacement is performed as a semi-active system in which haptic guidance is used to precisely position and align components. This is based on pre-operative planning based on CT imaging and can be modified as needed throughout the procedure. This technology, as shown with unicompartmental arthroplasty, is more accurate than conventional and even computer navigated instrumentation and will decrease variability. The knee can be planned to a neutral mechanical alignment. Intra-operatively, the computer will demonstrate compartment gap measurements to assist with soft tissue balancing. Alternatively, limb and component alignment can be accurately adjusted several degrees off the neutral axis to balance the knee and avoid or minimise soft tissue releases. This allows a more constitutional alignment within the alignment parameters accepted by the surgeon. This technique was utilised commonly in the first 60 robotic total knee replacements performed. We will now have the ability to collect accurate component positioning, alignment, and soft tissue balance data that can be correlated to outcomes of total knee replacements