Cells typically respond to a variety of geometrical cues in their environment, ranging from nanoscale surface topography to mesoscale surface curvature. The ability to
Abstract. Introduction. Back pain affects 80% of the population at some stage in their life with significant costs to society. Mechanisms and causes of pain have been investigated by studying the behaviour of functional spinal units (FSUs) subjected to displacement- or load
Introduction. The objective of the work is construction of a multi-bioactive scaffold based on that allows a space/time
Bereft of their optimal tissue context, cells lose their phenotype, function and therapeutic potential during Thermal imprinted was used to pattern (groove depth: 2,000 nm, groove width: 2,000 nm, line width: 2,000 nm) polydimethylsiloxane substrates of different rigidity (50 kPa, 130 kPa, 1,000 kPa). Grooved and planar substrates were subsequently coated with collagen type I and used to culture the aforementioned cell populations without and with macromolecular crowding (100 μg/ml carrageenan). After 3, 7 and 14 days in culture, cell morphology, viability, metabolic activity, proliferation, protein synthesis and deposition and gene expression analyses were conducted.Introduction
Methods
Differences at motor
Gradients of three-dimensional (3D) hierarchical tissues are common in nature and present specific architectures, as this is the case of the anisotropic subchondral bone interfaced with articular cartilage. While diverse fabrication techniques based on 3D printing, microfabrication, and microfluidics have been used to recreate tailored biomimetic tissues and their respective microenvironment, an alternative solution is still needed for improved biomimetic gradient tissues under dynamic conditions with
The development of functional biomaterials scaffolds for bone tissue engineering applications includes the
Osteogenesis is key to fracture healing and osteointegration of implanted material. Modification of surfaces on a nanoscale has been shown to affect cell interaction with the material and can lead to preferential osteogenesis. We hypothesised that osteogenesis could be induced in a heterogeneous population of osteoprogenitor cells by circular nanopits on a material surface. Furthermore, we intended to assess any correlation between nanopit depth and osteoinductive potential. The desired topographies were embossed onto polycaprolactone (PCL) discs using pre-fabricated nickel shims. All pits had a diameter of 30μm and investigated pit depths were 80nm, 220nm and 333nm. Scanning electron microscopy confirmed successful embossing and planar
Objectives. The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a
Background. Hip arthroplasties are associated with high postoperative pain scores. In some reports, moderate to severe pain was 58% on the first day postoperatively in total hip replacements (THRs). Several techniques are currently used at our institution to tackle acute pain following THRs. These include: 1) Spinal anaesthetic (SA) with Diamorphine only; 2) General anaesthetic (GA) only; 3) SA with local infiltration anaesthetic mixture 1 (LIA1,). Mixture 1 consisted of ropivacaine, adrenaline, and ketorolac; 4) SA with LIA mixture 2 (LIA2). Mixture 2 consisted of bupivacaine and adrenaline; 5) SA with LIA1 and PainKwell pump system. In this study we report on the techniques of acute pain
We have developed precision-engineered strontium eluting nanopatterned surfaces. Nanotopography has been shown to increase osteoblast differentiation, and strontium is an element similar to calcium, which has been proven to increase new bone formation and mineralization. This combination has great potential merit in fusion surgery and arthroplasty, as well as potential to reduce osteoporosis. However, osteoclast mediated osteolysis is responsible for the aseptic failure of implanted biomaterials, and there is a paucity of literature regarding osteoclast response to nanoscale surfaces. Furthermore, imbalance in osteoclast/osteoblast resorption is responsible for osteoporosis, a major healthcare burden. We aimed to assess the affect of strontium elution nanopatterned surfaces on osteoblast and osteoclast differentiation. We developed a novel human osteoblast/osteoclast co-culture system without extraneous supplementation to closely represent the in vivo environment. We assessed the surfaces using electron microscopy (SEM), protein expression using immunofluorescence and histochemical staining and gene expression using polymerase chain reaction (PCR). In complex co-culture significantly increased osteoblast differentiation and bone formation was noted on the strontium eluting, nanopatterned and nanopatterned strontium eluting surfaces, suggesting improved osteointegration. There was a reduction in macrophage attachment on these surfaces as well, suggesting specific anti-osteoclastogenic properties of this surface. Our results show that osteoblast and osteoclast differentiation can be
Aim. To
Summary. This study helps to elucidate how ColVI and Dcn within the pericellular matrix (PCM) of differentiating hMSCs directly impacts dynamic cytoskeletal response to load, and demonstrates an important role for the PCM in mechanotransduction during chondrogenesis. Introduction. Mechanosignaling events in differentiating human mesenchymal stem cells (hMSCs) are dependent on their temporally changing micromechanical environment and their dynamic cytoskeleton. During chondrogenic differentiation, hMSCs develop a matrix composed of type VI collagen (ColVI) and proteoglycans such as decorin (Dcn). We have previously demonstrated that this developing PCM is important in cellular mechanotransduction. The aim of this study was to determine the functional roles of ColVI and Dcn in modulating load-induced changes in the organization of vimentin intermediate filaments (VIF), actin microfilaments (AM), and vinculin. Methods. hMSCs were transduced with shRNA targeting either col6a1 (shColVI) or dcn (shDcn) and then cultured in 2% alginate beads for 14 days in chondrogenic media. GFP-transduced hMSCs were cultured in parallel. Cells with their intact PCM were isolated with 100mM sodium citrate, 30mM EDTA, and re-embedded in alginate discs. These hMSC-alginate constructs underwent unconfined compression at 0.1Hz for 1 hour from 0–10% strain. Free Swelling (FS) and loaded discs were fixed either immediately following (0hr) or 4 hours post-load. Discs were cryosectioned and fluorescently labeled for VIF, AM, or vinculin with DAPI counterstain. Confocal image-stacks were collected and corrected total cell fluorescence (CTCF) per area was calculated using ImageJ (NIH) to quantify cytoskeletal organization. Results. VIF fluorescence showed a dynamic cytoskeletal response to load in non-infected and GFP-transduced
Introduction. Bone-anchored devices have been used as skin-crossing conduits to record neuromuscular signals in sedated animals. Long-term recordings from cognisant subjects must be assessed. Hypothesis A bone-anchored device is suitable as a conduit for epimysial EMG (Electromyogram) recordings and is reliable in the long-term. Methods. The bone-anchored device was implanted into the medial aspect of an ovine tibia (n=1), and the epimysial electrode was sutured onto the peroneus tertius muscle. Epimysial and Surface EMG signals were recorded for 12 weeks. Results. The signal-to-noise ratio (SNR) was greater for epimysial (5.1) than surface electrodes (1.6). SNR deteriorated near the end of 12 weeks, due to debris in an external connector. Discussion and Conclusion. Implanted electrodes improve SNR, selectivity, signal reliability and reduce cross-talk. Bone-anchored devices allow hard-wired connections without infection or fatigue at the skin-interface. Hard-wired connections will enable more advanced prosthetic
There is a growing interest in the development of tissue engineering (TE) therapies to repair damaged bone. Among the scaffolds for TE applications, injectable hydrogels have demonstrated great potential as three-dimensional cell cultures in bone TE, owing to their high water content, porous structure that allows cell transplantation and proliferation, similarity to the natural extracellular matrix and ability to match irregular defects. We investigated whether fibrin-based hydrogels capable of transducing near infrared (NIR) energy into heat can be employed to lead bone repair. Hollow gold nanoparticles with a plasmon surface band absorption at ∼750 nm, a NIR wavelength within the so called “tissue optical window”, were used as fillers in injectable fibrin-based hydrogels. These composites were loaded with genetically-modified cells harbouring a heat-activated and rapamycin-dependent gene circuit to regulate transgenic expression of the reporter gene firefly luciferase (fLuc). NIR-responsive cell constructs were injected to fill a 4 mm diameter critical-sized defect (CSD) in the parietal bone of mouse calvaria. NIR-irradiation in the presence of rapamycin triggered a pattern of fLuc activity that faithfully matched the illuminated area of the implanted hydrogel. Having shown that this platform can
Introduction. Changes in central nervous system (CNS) pathways
Axial musculoskeletal
Summary. Randomised
Current cell-based tissue engineering strategies have limited clinical applicability due to the need for large cell numbers and prolonged culture periods that lead to phenotypic drift.
During