Advertisement for orthosearch.org.uk
Results 1 - 20 of 552
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 9 - 9
14 Nov 2024
Enderami E Timmen M Stange R
Full Access

Introduction. Cartilage comprises chondrocytes and extracellular matrix. The matrix contains different collagens, proteoglycans, and growth factors produced by chondroprogenitor cells that differentiate from proliferating to hypertrophic chondrocytes. In vitro chondrocyte growth is challenging due to differences in behaviour between 2D and 3D cultures. Our aim is to establish a murine 3D spheroid culture method using chondrocytes to study the complex interaction of cells on the chondro-osseous border during enchondral ossification. Method. Primary chondrocytes were isolated from the knee of WT new-born mice and used to form 10,000 cell number spheroids. We used the ATDC5-chondrocyte cell line as an alternative cell type. Spheroids were observed for 7, 14, and 21 days before embedding in paraffin for slicing. Alcian blue staining was performed to identify proteoglycan positive areas to prove the formation of extracellular matrix in spheroids. Collagen type 2, and Collagen type X expression were analyzed via quantitative real-time PCR and immunohistochemistry. Result. Alcian blue staining showed increasing matrix formation from day 7 to day 14 and proliferative chondrocytes at early time points. Both cell types showed increasing mRNA expression of Collagen type 2 from day 7 to day 21. Collagen type X positive staining starting from day 14 on confirmed the development of hypertrophic stage of chondrocytes. ATDC5 cells exhibited a slower progression in chondrogenic differentiation compared to primary chondrocytes. Conclusion. In chondrocyte spheroids, we observed proceeding differentiation of chondrocytes reaching hypertrophic phase. Primary chondrocytes showed faster development than ATDC5 cell line. Overall, spheroid culture of chondrocytes could be a good basis to study the interaction of different cells types of the chondro-osseous border by combination of chondrocytes with e.g., endothelial cells and osteoblasts within the spheroid. Those organoid cultures might also help to reduce animal experiments in the future, by mimicking complex regeneration procedures like bone growth or fracture healing. DFG(German Research Foundation)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 64 - 64
17 Apr 2023
Bermudez-Lekerika P Croft A Crump K Wuertz-Kozak K Le Maitre C Gantenbein B
Full Access

Previous research has shown catabolic cell signalling induced by TNF-α and IL-1β within intervertebral (IVD) cells. However, these studies have investigated this in 2D monolayer cultures, and under hyper-physiological doses. Thus, we aim to revisit the catabolic responses of bovine IVD cells in vitro in 3D culture under increasing doses of TNF-α or IL-1β stimulation at three different timepoints. Primary bovine nucleus pulposus (NP) and annulus fibrosus (AF) cells were isolated and expanded for two weeks. Subsequently, NP and AF cells were encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks for phenotype recovery. Re-differentiated cells were stimulated with 0.1, 1 and 10 ng/ml TNF-α or with 0.01, 0.1 and 10 ng/ml IL-1β for one week. Beads were collected on the stimulation day (Day 0) and on Day 1 and 7 after stimulation. A dose-dependent upregulation of catabolic markers was observed in both cell types after one day of TNF-α or IL-1β stimulation. 10 ng/ml TNF-α stimulation induced a significant upregulation (p<0.05) of ADAMTS4, MMP3 and MMP13 in AF cells after one day of stimulation. Similarly, MMP3 upregulation showed a strong trend (p=0.0643) in NP cells. However, no effects on expression were seen after seven days. In addition, no significant difference between treatments in COL2, COL1 and ACAN expression was observed, and cell viability was not reduced at any time point, regardless of the treatment. We demonstrate a dose-dependent upregulation of catabolic markers in NP and AF cells under TNF-α or IL-1β stimulation, with a significant upregulation of ADAMTS4, MMP3 and MMP13 genes in AF cells after one day of treatment. Notably, after seven days of treatment, the dose-dependent effects were no longer observed possibly due to an adaptation mechanism of IVD cells to counter the metabolic shift


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 26 - 26
14 Nov 2024
Tiplady S Heinemann C Kruppke B Manda K Clarke S Lennon A Larrañeta E Buchanan F
Full Access

Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped tricalcium phosphate (PLGA-SrTCP) scaffold and evaluate in an in vitro co culture study containing osteoporotic donor cells. Method. PLGA, PLGA TCP, and PLGA SrTCP scaffolds were produced using Fused Filament Fabrication (FFF). A four-group 35-day cell culture study was carried out using human bone marrow derived mesenchymal stem cells (hMSCs) from osteoporotic and control donors (monoculture) and hMSCs & human monocytes (hMCs) (Co culture). Outcome measures were biochemical assays, PCR, and cell imaging. Cells were cultured on scaffolds that had been pre-degraded for six weeks at 47°C prior to drying and gamma sterilisation. Result. 3D printed scaffolds were successfully produced by FFF. All groups in the study supported cell attachment onto the scaffolds, producing extracellular matrices as well as evidence of osteoclast cell structures. Osteoporotic cells increased CTSK activity and CAII activity and decreased ALP activity compared to controls. In control cultures, the addition of bTCP and bTCP/Sr to the PLGA reduced TRAP5b, CAII and ALP activity compared to PLGA alone. The addition of Sr did not show any differences between donors. Conclusion. This study details suitability of 3D printed polymer scaffolds for use in bone tissue applications. Both composite and pure polymer scaffolds promote osteogenesis in vitro. The introduction of ceramic filler and ion doping does not beneficially effect osteogenic potential and can reduce its ability compared to pure polymer. This study suggests the behaviour of control and osteoporotic cells are different and that osteoporotic cells are more prone to bone resorption. Therefore, it is important to design bone scaffolds that are specific to the patient as well as to the region of fracture


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 11 - 11
2 Jan 2024
Ciardulli M Giudice V Oliva F Selleri C Maffulli N Della Porta G
Full Access

Poor tendon repair is an unsolved issue in clinical practice, due to complex tendon structure. Tendon stem/progenitor cells (TSPCs) play key roles in homeostasis, regeneration, and inflammation regulation in acute tendon injuries, and rely on TGF-β signaling for recruitment into degenerative tendons. In this study, we aimed to develop an in vitro model for tenogenesis adopting a dynamic culture of a fibrin 3D scaffold, bioengineered with human TSPCs collected from both healthy and tendinopathic surgery explants (Review Board prot./SCCE n.151, 29 October 2020). 3D culture was maintained for 21 days under perfusion provided by a custom-made bioreactor, in a medium supplemented with hTGF-β1 at 20 ng/mL. The data collected suggested that the 3D in vitro model well supported survival of both pathological and healthy cells, and that hTGF-β signaling, coupled to a dynamic environment, promoted differentiation events. However, pathological hTSPCs showed a different expression pattern of tendon-related genes throughout the culture and an impaired balance of pro-inflammatory and anti-inflammatory cytokines, compared to healthy hTSPCs, as indicated by qRT-PCT and immunofluorescence analyses. Additionally, the expression of both tenogenic and cytokine genes in hTSPCs was influenced by hTGF-β1, indicating that the environment assembled was suitable for studying tendon stem cells differentiation. The study offers insights into the use of 3D cultures of hTSPCs as an in vitro model for investigating their behavior during tenogenic events and opens perspectives for following the potential impact on resident stem cells during regeneration and healing events


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 81 - 81
17 Apr 2023
Rambacher K Gennrich J Schewior R Lang S Pattappa G Zihlmann C Stiefel N Zellner J Docheva D Angele P
Full Access

Meniscus tears have been treated using partial meniscectomy to relieve pain in patients, although this leads to the onset of early osteoarthritis (OA). Cell-based therapies can help preserve the meniscus, although the presence of inflammatory cytokines compromises clinical outcomes. Anti-inflammatory drugs (e.g. celecoxib), can help to reduce pain in patients and in vitro studies suggest a beneficial effect on cytokine inhibited matrix content. Previously, we have demonstrated that the inhibitory effects of IL-1β can be countered by culture under low oxygen tension or physioxia. The present study sought to understand whether physioxia, celecoxib or combined application can counter the inhibitory effects IL-1β inhibited meniscus cells. Human avascular and vascular meniscus cells (n =3) were isolated and expanded under 20% (hyperoxia) or 2% (physioxia) oxygen. Cells were seeded into collagen scaffolds (Geistlich, Wolhusen) and cultured for 28 days either in the presence of 0.1ng/mL IL-1β, 5µg/mL celecoxib or both under their expansion oxygen conditions. Histological (DMMB, collagen I and collagen II immunostaining), GAG content and gene expression analysis was evaluated for the scaffolds. Under hyperoxia, meniscus cells showed a significant reduction in GAG content in the presence of IL-1β (*p < 0.05). Celecoxib alone did not significantly increase GAG content in IL-1β treated cultures. In contrast, physioxic culture showed a donor dependent increase in GAG content in control, IL-1β and celecoxib treated cultures with corresponding histological staining correlating with these results. Additionally, gene expression showed an upregulation in COL1A1, COL2A1 and ACAN and a downregulation in MMP13 and ADAMTS5 under physioxia for all experimental groups. Physioxia alone had a stronger effect in countering the inhibitory effects of IL-1β treated meniscus cells than celecoxib under hyperoxia. Preconditioning meniscus cells under physioxia prior to implantation has the potential to improve clinical outcomes for cell-based therapies of the meniscus


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 75 - 75
11 Apr 2023
Hofmann J Bewersdorf T Schmidmaier G Grossner T
Full Access

The novel, highly-sensitive and non-destructive method for the quantification of the osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs), by the evaluation of its hydroxyapatite (HA), in vitro is 99mTc-HDP-Labelling. 99mTc-HDP (tracer) binds rapidly to HA and this uptake can be visualized and quantified. This study was performed to evaluate if this method is suitable to perform a real-time assessment during an ongoing cell culture and if the radioactive tracer may influence the cells and their ability to differentiate. BM-MSCs (n=3) were cultivated in 35mm-dishes. Groups 1 and 3 received DMEM-LG based osteogenic media while Groups 2 und 4 were non-osteogenic controls. Groups 1 and 2 (multi-labelling) were incubated with 5 MBq 99mTc-HDP for 30min on day 7 (d7) and the bound activity was measured using an activimeter. Subsequently the cell-culture was continued and again labelled with 99mTc-HDP on day 14 and 21 (d14, d21). Groups 3 and 4 (single labelling), cultivation of the respective triplicates, ended on day 7, 14 and 21 (d7, d14, d21) followed by 99mTc-HDP-Labelling. Statistical analysis using one-factor ANOVA (p<0.05). Absolute tracer uptake increased steadily in both osteogenic groups: 1 (d7: 0.315; d14: 1.093; d21: 3.283 MBq) and 3 (d7: 0.208; d14: 0.822; d: 212.437 MBq) and was significantly higher than in the corresponding non-osteogenic control-group (Group 2 and 4) at all timepoints. (p<0.001). No significant negative effect of the radioactive tracer could be revealed in group 1 (multi radioactive labelling on d7, d14, d21) compared to Group 3 (singe labelling). The 99mTc-Uptake of groups 2 and 4 was not significantly different at any time. Our data show that the repeated exposition to 99mTc-HDP has no negative influence on the osteogenic differentiation potential of BM-MSCs. Therefore, the method is capable of determining the amount of HA during an ongoing cell culture


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 134 - 134
2 Jan 2024
Häusner S Horas K Blunk T Herrmann M
Full Access

Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow mononuclear cell (BM-MNC) populations have not yet been described. BM-MNCs consist of a heterogeneous mixture of hematopoetic and non-hematopoetic lineage fractions. Cell culture in a 3D environment is necessary to reflect on the complex mix of these adherend and non-adherend cells in a physiologically relevant context. Therefore, the main aim of this approach was to establish conditions for a stable 3D BM-MNC culture to assess cellular responses on fracture healing strategies. BM samples were obtained from residual material after surgery with positive ethical vote and informed consent of the patients. BM-MNCs were isolated by density gradient centrifugation, and cellular composition was determined by flow cytometry to obtain unbiased data sets on contained cell populations. Collagen from rat tail and human fibrin was used to facilitate a 3D culture environment for the BM-MNCs over a period of three days. Effects on cellular composition that could improve the regenerative potential of BM-MNCs within the BM autograft were assessed using flow cytometry. Cell-cell-interactions were visualized using confocal microscopy over a period of 24 hours. Cell localization and interaction partners were characterized using immunofluorescence labeled paraffin sectioning. Main BM-MNC populations like Monocytes, Macrophages, T cells and endothelial progenitor cells were determined and could be conserved in 3D culture over a period of three days. The 3D cultures will be further treated with already clinically available reagents that lead to effects even within a short-term exposure to stimulate angiogenic, osteogenic or immunomodulatory properties. These measures will help to ease the translation from “bench to bedside” into an intraoperative protocol in the end


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 80 - 80
1 Mar 2021
van Gestel N Kleuskens M Wanders D Ito K Arts J van Rietbergen B Hofmann S
Full Access

Novel biomaterials are being developed and studied, intended to be applied as bone graft substitute materials. Typically, these materials are being tested in in vitro setups, where among others their cytotoxicity and alkaline phosphatase activity (as a marker for osteoblastic differentiation) are being evaluated. However, it has been reported that in vitro tests correlate poorly with in vivo results and therefore many promising biomaterials may not reach the clinic as a bone graft substitute product. One of the reasons for the poor correlation, may be the minimal complexity of the in vitro tests, as compared to the in vivo environment. Ex vivo models, mimicking the natural tissue environment whilst maintaining control of culture parameters, may be a promising alternative to assess biomaterials for bone formation. Assess the possibility of an ex vivo culture platform to test biomaterials on their potential to stimulate new bone formation. Osteochondral plugs (cylinders n=10, Ø 10 mm, height 15 mm) were drilled from fresh porcine knees, from the slaughterhouse. A bone defect (Ø 6 mm) was created and which was filled with a biomaterial graft (S53P4 bioactive glass (n=3); collagen sponges loaded with BMP-2 (n=3, as positive control)) or kept empty (n=4). The explants were cultured in custom-made two-chamber bioreactors for six weeks (LifeTec Group BV). Cartilage and bone were physically separated, similar to the in vivo situation, by a sealing ring. The two tissues were cultured in separate compartments, allowing for specific culture medium for each tissue. Medium was changed every 2–3 days and weekly micro computed tomography (µCT) images were obtained to longitudinally monitor the formation of new bone. An MTT assay was performed on half of the samples after six weeks of culture. The other samples were fixed for histology, to determine which cells were present after six weeks. The MTT metabolic assay showed that a number of cells in the bone were viable after six weeks. The further away from the border, the fewer living cells were observed. The cells in the cartilage also survived. No significant bone formation was observed with µCT in either of groups, even though abundant bone formation was expected in the BMP-2 group. Explanations of the negative results of the positive group might be that too few viable cells remain after six weeks, or that the cells that are still present are not able to form bone. No significant bone formation was observed in the bone defects in osteochondral explants that were cultured with, or without, biomaterials for six weeks. However, the platform showed that it is capable to successfully culture osteochondral explants for six weeks. Histology needs to be performed to evaluate which cells were present at the end of the culture and this will be compared to the cells present directly after drilling the explants


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 61 - 61
1 Nov 2021
Tilotta V Cicione C Giacomo GD Ambrosio L Russo F Papalia R Vadalà G Denaro V
Full Access

Introduction and Objective. Low back pain (LBP) is a disorder strongly associated with intervertebral disc degeneration (IDD) with an important impact on the quality of life of affected people. To date, LBP treatment is based on conservative methods with the aim to reduce back pain without restoring the degenerative environment of the disc. The main cause of IDD is the drastic reduction of the proteoglycan content within the nucleus pulposus (NP), eventually leading to the loss of disc water content, micro-architecture, biochemical and mechanical properties. A promising approach for disc regeneration is represented by the transplantation of mesenchymal stromal cells (MSCs). The exact mechanism remains unknown. Growing evidence suggests that MSCs can influence cells and modulate cells’ behaviour by secreting a set of bioactive factors. MSCs secretome is composed of several molecules such as soluble protein, lipids, nucleic acids and extracellular vesicles (EVs) involved in inflammation, immunomodulation, cell survival and intercellular communication. The aim of this study was to evaluate the in vitro effects of MSCs secretome on human NP cells (hNPCs) in a 3D culture model with and without inflammatory stimulus. Materials and Methods. MSCs secretome was collected from bone marrow-MSCs (BM-MSCs) and adipose tissue-MSCs (ASCs) after centrifugation and obtained by culturing cells without fetal bovine serum (FBS) for 48 hours. hNPCs were isolated from surgical specimens through digestion with type II collagenase, culture expanded in vitro, encapsulated in alginate beads (three-dimensional culture system) and treated with growth medium (controls), BM-MSCs or ASCs secretome with or without interleukin-1 beta (IL-1b). After 7 days, total RNA was extracted and reverse-transcribed. Gene expression levels of catabolic and anabolic genes were analyzed through real time-polymerase chain reaction (qPCR). Cell proliferation and glycosaminoglycan (GAG) production was assessed by flow cytometry and 1,9-dimethylmethylene blue (DMMB), respectively. hNPCs in alginate beads were stained with Live/Dead assay and detected using confocal immunofluorescence microscopy. Data were analyzed using Graphpad prism 8 and expressed as mean ± S.D. One-way ANOVA analysis was used to compare differences among the groups under exam. Results. Our results reported an increase of hNPCs proliferation after treatment with both MSCs-secretomes. In detail, cell proliferation levels increased at 7 days after ASC-secretome (p ≤ 0,05) and BM-secretome (p ≥ 0,05) treatment compared to control. Live/dead staining showed that cell death was reduced by BM-secretome (p ≤ 0,05); in combined treatment of BM-secretome with IL1b 10ng/mL (p ≤ 0,05) at 7 days compared to control. There is not a significant difference between treated and untreated hNPCs’ GAG synthesis. In addition, gene expression levels resulted to be modulated by MSCs-secretomes under study compared to controls. Conclusions. Although the cell-therapy may be considered an attractive and safe option, MSCs require long and expensive processes. In conclusion, our experimental conditions supported as BM-MSCs and ASCs secretomes could represent cell-free alternative approaches in IDD, overcoming translational limits of cell therapy to the clinical practice


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 114 - 114
2 Jan 2024
Maglio M Tschon M Sartori M Martini L Rocchi M Dallari D Giavaresi G Fini M
Full Access

The use of implant biomaterials for prosthetic reconstructive surgery and osteosynthesis is consolidated in the orthopaedic field, improving the quality of life of patients and allowing for healthy and better ageing. However, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials, particularly for the study of local effects of implant and osteointegration. Despite the complex process of osseointegration is difficult to recreate in vitro, the growing challenges in developing alternative models require to set-up and validate new approaches. Aim of the present study is to evaluate an advanced in vitro tissue culture model of osteointegration of titanium implants in human trabecular bone. Cubic samples (1.5×1.5 cm) of trabecular bone were harvested as waste material from hip arthroplasty surgery (CE AVEC 829/2019/Sper/IOR); cylindrical defects (2 mm Ø, 6 mm length) were created, and tissue specimens assigned to the following groups: 1) empty defects- CTR-; 2) defects implanted with a cytotoxic copper pin (Merck cod. 326429)- CTR+; 3) defects implanted with standard titanium pins of 6 µm-rough (ZARE S.r.l) -Ti6. Tissue specimens were cultured in mini rotating bioreactors in standard conditions, weekly assessing viability. At the 8-week-timepoint, immunoenzymatic, microtomographic, histological and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, differently from Ti6 which appears to have a trophic effect on the bone. MicroCT and histological analysis supported the results, with lower BV/TV and Tb.Th values observed in CTR- compared to CTR+ and Ti6 and signs of matrix and bone deposition at the implant site. The collected data suggest the reliability of the tested model which can recreate the osseointegration process in vitro and can therefore be used for preliminary evaluations to reduce and refine in vivo preclinical models. Acknowledgment: This work was supported by Emilia-Romagna Region for the project “Sviluppo di modelli biologici in vitro ed in silico per la valutazione e predizione dell'osteointegrazione di dispositivi medici da impianto nel tessuto osseo”


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 49 - 49
1 May 2017
Fox N Stanley M Thomas D Fisher J Ingham E
Full Access

The ability to pre-clinically evaluate new cartilage substitution therapies in viable physiological biotribological models, such as the femoral-tibial joint would be advantageous. Methods for osteochondral (OC) plug culture have been developed and the aim of this study was to extend these methods to organ culture of whole femoral condylar and tibial osteochondral tissues. Porcine femoral condyles and tibial plateau were aseptically dissected. The majority of cancellous bone was removed leaving intact cartilage and a layer of cortical bone. OC plugs were from porcine knee condyles. “Whole joint” tissues and OC plugs were cultured in defined medium and the viability of the cartilage at day 0, 8 or 14 days of culture assessed by XTT assay and LIVE/DEAD staining. Histological analysis (H&E; alcian blue staining) was used to determine cell number and visualise glycosominoglycans (GAGs). GAG levels were quantified in the cartilage using the dimethylene blue assay. XTT conversion by OC plug cartilage reduced significantly between day 0 and day 8 with no further change between day 8 and 14. GAG levels did not change. “Whole joint” tissue behaved similarly with reduced XTT conversion between days 0 and 8 (femoral only) and days 0 and 14 (femoral and tibial). LIVE/DEAD staining showed the majority of cells remained alive in the mid and deep cartilage zones. There was a band of mainly dead cells in the surface zone, from day 0. There was no change in the GAG levels over the 14 day culture period. In conclusion, large cuts of femoral and tibial osteochondral tissues were maintained in organ culture for extended periods. Surface zone chondrocytes rapidly lost membrane integrity ex-vivo whereas mid- and deep zone chondrocytes remained viable. It is hypothesised that physiological loading in a novel physically interactive bioreactor will improve the viability and will be the focus of future studies


Objectives. Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect. Methods. Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay. Results. The relative quantification (condition/control) of WST-1 assay on day seven revealed a significant decrease in tenocyte proliferation in small-diameter culture wells (96 and 24 wells) due to the gelling effect. PRFM in large-diameter culture wells (12 and six wells) and co-culture systems induced a significant increase in tenocyte proliferation compared with the control group. The gelling effect of PRFM was avoided by the co-culture device. Conclusion. When PRFM and tenocytes are cultured in small-diameter culture wells, the gelling effect will occur and make screening of personalized best-fit PRFM difficult. This effect can be avoided with the co-culture device. Cite this article: C-H. Chiu, P. Chen, W-L. Yeh, A. C-Y. Chen, Y-S. Chan, K-Y. Hsu, K-F. Lei. The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone Joint Res 2019;8:216–223. DOI: 10.1302/2046-3758.85.BJR-2018-0258.R1


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives. Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs. Methods. Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS). Results. HPL and HPL+Hplasma had a significantly greater growth-promoting effect than FBS, while Hplasma exhibited a similar growth-promoting effect to that of FBS. ADMSCs cultured in HPL and/or Hplasma generated more colony-forming unit fibroblasts (CFU-F) than those cultured in FBS. After long-term culture, ADMSCs cultured in HPL and/or Hplasma showed reduced cellular senescence, retained typical cell phenotypes, and retained differentiation capacities into osteogenic and adipogenic lineages. Conclusion. HPL and Hplasma prepared from blood products after their recommended transfusion date can be used as an alternative and effective source for large-scale ex vivo expansion of ADMSCs. Cite this article: J. Phetfong, T. Tawonsawatruk, K. Seenprachawong, A. Srisarin, C. Isarankura-Na-Ayudhya, A. Supokawej. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017;6:414–422. DOI: 10.1302/2046-3758.67.BJR-2016-0342.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 41 - 41
1 Nov 2018
Du S Zeugolis D O'Brien T
Full Access

Macromolecular crowding (MMC) is a biophysical phenomenon that accelerates thermodynamic activities and biological processes by several orders of magnitude. Herein, we ventured to identify the optimal crowder and to assess the influence of MMC in umbilical cord mesenchymal stem cell. 7 types of carrageenan (κ&λ, κ-LV1, κ-LV2, λ-MV, λ-HV, ι-MV, ι-HV) acted as crowder and biophysical properties were assessed respectively. Human umbilical cord mesenchymal stem cells were seeded at 15,000 cells/cm. 2. in 24 well plates and allowed to attach for 24 h. Subsequently, the medium was changed to medium with 7 types of carrageenan (10, 50, 100, 500 μg/ml) and 100 μM L-ascorbic acid phosphate (Sigma Aldrich). Medium without carrageenan was used as control. Cell morphology and SDS-PAGE analysis were conducted after 3, 5 and 7 days. Biophysical assessment showed 7 types of carrageenan have increased particle size with concentration, good polydispersity and negative charges. SDS-PAGE and densitometric analyses revealed significant increase (p < 0.001) in collagen deposition in the presence of 10 μg/ml carrageenan λ and ι at all the time points. SDS-PAGE and densitometric analysis also showed that the highest collagen deposition was observed in culture at 50 μg/ml carrageenan λ. No significant difference was observed in cell morphology between the groups. Collectively, these data primarily illustrate the beneficial effect of carrageenan λ in human umbilical cord mesenchymal stem cell culture


Full Access

Infected wounds are a major problem for patients and health care systems. The inflammation triggers expression of high levels of extracellular protease activities which degrade newly formed granulation tissue. The expression of host-derived proteases had been studied in wound healing extensively. In contrast, the contribution of bacterial proteases in impaired healing acute and chronic wounds is poorly understood as is how bacterial proteases can be blocked. In this study the expression of P. aeruginosa proteases was studied. P. aeruginosa is associated with poor healing and sufficiently common in wound infections to merit closer study. We used in vitro biofilm and planktonic culture models to analyze the culture-dependent expression of different P. aeruginosa proteases and how protease modulating polymers can inhibit activities. P. aeruginosa (PAO1, DSM 22644) was grown in LB. o. medium (aerated planktonic cultures) or in a biofilm culture model (dialysis tubing on LB. o. plates). The supernatant of planktonic or wash fluids from biofilm cultures were analyzed for protease activity. Global extracellular protease activities increased in a time- and culture condition-dependent manner (for planktonic cultures 180 ng/ml trypsin equivalent 8h, 330 ng/ml 24h, 490 ng/ml 48h; biofilm cultures 190 ng/ml trypsin equivalent 8h, 420 ng/ml 24h, 170 ng/ml 48h). Enzyme zymography revealed in biofilm cultures predominant bands at 50 kD (8h, 24h, 48h), 90 kD (24h) and > 200 kD (8h, 24h, 48h). In planktonic cultures the pattern was different 50 kD (8h), 90 kD (8h, 24h, 48h), 130 kD (24h, 48h) and > 200 kD (8h, 24h). Two different polyacrylate superabsorbers could inhibit P. aeruginosa protease activities. Favor PAC 300 blocked protease activity by 60% and SXM 9170 by 35%. These data demonstrate complex, culture-dependent expression of extracellular proteases in P. aeruginosa, a microorganism associated with poor wound healing outcomes. From a therapeutic perspective polyacrylate superabsorbers strongly inhibited global protease activities. In the next steps the protease expression pattern needs to be analyzed in P. aeruginosa wounds and correlated with healing progression


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 65 - 65
1 Jul 2014
Kuntz L Tuebel J Marthen C Hilz F von Eisenhart-Rothe R Burgkart R
Full Access

Introduction. Despite the high regenerative capacity of bone, large bone defects often require treatment involving bone grafts. Conventional autografting and allografting treatments have disadvantages, such as donor site morbidity, immunogenicity and lack of donor material. Bone tissue engineering offers the potential to achieve major advances in the development of alternative bone grafts by exploiting the bone-forming capacity of osteoblastic cells. However, viable cell culture models are essential to investigate osteoblast behavior. Three-dimensional (3D) cell culture systems have become increasingly popular because biological relevance of 3D cultures may exceed that of cell monolayers (2D) grown in standard tissue culture. However, only few direct comparisons between 2D and 3D models have been published. Therefore, we performed a pilot study comparing 2D and 3D culture models of primary human osteoblasts with regard to expression of transcription factors RUNX2 and osterix as well as osteogenic differentiation. Patients and Methods. Primary human osteoblasts were extracted from femoral neck spongy bone obtained during surgery procedures. Primary human osteoblasts of three donor patients were cultured in monolayers and in three different 3D culture models: 1) scaffold-free cultures, also referred to as histoids, which form autonomously after multilayer release of an osteoblast culture; 2) short-term (10-day) collagen scaffolds seeded with primary human osteoblasts (HOB); 3) long-term (29-day) collagen scaffolds seeded with HOB. Expression levels of transcription factors RUNX2 and osterix, both involved in osteoblast differentiation, were investigated using quantitative PCR and immunohistochemical staining. Furthermore, markers of osteogenic differentiation were evaluated, such as alkaline phosphatase activity, osteocalcin expression, and mineral deposition, as well as the expression of collagen type I and fibronectin extracellular matrix proteins. Results. Cells of the same origin, which were cultivated in different culture models, showed varying expression levels with regard to transcription factors RUNX2 and osterix as well as osteogenic markers. Increased levels of transcription factor RUNX2 and the extracellular matrix protein fibronectin were observed in all 3D cell culture models compared to monolayers. Furthermore, long-term cultivated histoids showed increased levels of osteogenic late-stage marker osteocalcin and transcription factor osterix. Additionally, long-term collagen scaffolds seeded with HOB showed elevated levels of osteocalcin compared to monolayers and short-term scaffolds. Moreover, alkaline phosphatase activity and mineralization capacity were increased in histoids. Conclusion. Considering the complex biochemical interactions of cells with surrounding cells and the extracellular matrix in vivo, important biological properties are disregarded when cells are only studied in 2D study models. Hence, we compared different 3D HOB cell culture models to 2D HOB monolayers with regard to expression of transcription factors RUNX2 and osterix as well as osteogenic differentiation in vitro. Our pilot study indicated that three-dimensional study models may promote osteogenic differentiation in vitro. Additionally, a beneficial effect of longer culture duration on osteogenic differentiation was observed. Hence, our findings emphasise the importance of dimension and culture duration when studying osteoblast function. Subsequent studies with higher sample sized may lead to the development of viable primary human osteoblast cell culture models for bone tissue engineering. Summary. Three-dimensional cell culture models of primary human osteoblasts (HOB), including collagen scaffolds and scaffold-free cultures, were compared to HOB monolayers with regard to osteogenic differentiation. Our study indicated that three-dimensional study models may promote osteogenic differentiation of HOB in vitro


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 27 - 27
1 Apr 2018
Graceffa V Zeugolis D
Full Access

The main limitation of autologous chondrocyte implantation techniques is the necessity for in vitro cell expansion, which is associated with phenotypic drift and loss of extracellular matrix synthesis. Although media supplements (e.g. TGF-β) are extensively used to mitigate the tendency of de-differentiation, the lack of extracellular matrix is still one of the major obstacles to obtaining engineered cartilage substitutes with long-term clinical efficacy. Macromolecular crowding (MMC) is a biophysical phenomenon that increases tissue-specific extracellular matrix deposition. This study aimed to test whether MMC can be used to enhance hyaline-like ECM deposition in human chondrocyte culture: this hypothesis was tested in cells at P2 and at P7. Cells at P2 were cultured using a standard medium (DMEM/F12) in monolayer or alginate beads, whilst cells at P7 were cultured and re-differentiated using the system Clonetics™ of Lonza in the presence of 5 % HS or 5 % FBS, in monolayer and alginate beads. Macromolecular crowding medium was added 14 days after the start of re-differentiation. Collagen deposition was evaluated after 2, 5 and 10 days using SDS-PAGE and immunocytochemistry. MMC enhanced matrix deposition in all the conditions tested. However, although cells at P7 were cultured using a commercially available system, their deposited matrix was richer in collagen type I, whilst collagen type II was barely detectable. This was even more evident for cells in monolayer in HS and indicates that cells acquired a fibroblastic phenotype. To conclude, we showed that MMC increased matrix deposition in chondrocyte culture and that, unfortunately, commercially available systems are not always able to maintain chondrogenic phenotype. Since ECM produced is often undetectable and collagen expression and synthesis are not always correlated with its secretion, we propose to use MMC to assess chondrocyte phenotype maintenance and effectiveness of re-differentiation media


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 544 - 553
1 Apr 2006
Akmal M Anand A Anand B Wiseman M Goodship AE Bentley G

Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II collagen was produced by both bovine and human chondrocytes in the peripheral and central regions of the constructs and the staining intensity was enhanced by culture within the RWV. A capsule of flattened cells containing type-I collagen developed around the constructs maintained under static conditions when seeded with either bovine or human chondrocytes, but not when cultured within the RWV bioreactor


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 131 - 131
1 Nov 2018
Rampin A Skoufos I Tzora A Prassinos N Diakakis N Zeugolis D
Full Access

Tenocytes from several mammal species have been shown to be prone to phenotypic drift at early sub-culture passages. In the present study we compared allogenic and xenogenic serum supplementation suitability as a supplement for the in vitro expansion of equine tenocytes (eTCs), in combination with the presence or absence of crowding conditions. eTCs were isolated from superficial digital flexor tendon and expanded in normal growth medium containing DMEM, 10% appropriate serum, 1% penicillin/streptomycin solution. Isolation was performed by migration method in growth medium containing the selected serum. Silver staining, densitometry, zymography, immunofluorescence, metabolic activity, proliferation, viability and morphology were performed after 3, 5 and 7 days in culture with a seeding density of 10,000 cells/cm2. Treatment conditions were equine serum (ES) or foetal bovine serum (FBS), with or without 75 μg/mL of crowding agent carrageenan (CR). Viability and metabolic activity of eTCs were affected by FBS. eTCs in ES reached higher cell density than in FBS in day 7, especially with CR. Morphology of eTCs was maintained under different sera. Silver staining on pepsin digested cell layers shows that collagen type I deposition rate is remarkably enhanced in the presence of CR in all conditions. Immunofluorescence showed increased expression for collagen I, III, V and VI in both sera in the presence of CR. Deposition of all collagen types but type VI was increased by ES supplementation. We conclude that ES in combination with CR can represent a reliable choice for the ex vivo expansion of eTCs


Introduction. Stem cells are widely known in the state of the art of cell-based therapies. Recently, ADSCs are becoming a popular resource of adult stem cells across different fields, and latest publications show its wide application for the treatment of soft tissue injuries like tendon injuries, which represent a high percentage of the consultations in orthopaedic practitioners. Molecular-based therapies and local deliveries are necessary for an effective treatment of chronic tendon injuries. In this study, human ADSCs were selected to investigate its differentiation potential into the tendon phenotype. Customised cell culture media was used as the differentiation factor. Materials and Methods. In the present study, ADSCs were used in passage 3 to ensure pluripotency in vitro. Using the customised cell culture media, its time, concentration and frequency of refreshment effects were investigated. On the selected time points different techniques were performed: 1,) cells were harvested, and messenger RNA (mRNA) was examined by Real Time Polymerase Chain Reaction (RT-PCR), analysing the expression of common tendon and extracellular matrix (ECM) markers. Protein expression was determined by Western Blotting. 2) Collagen content was analysed by tissue digestion and colorimetric techniques. 3) Deoxyribonucleic Acid (DNA) was stained, and fluorescent imaging was used to characterise nuclear roundness. 4) Metabolic activity of the cultures was assessed using CellTiter 96® Aqueous One Solution (MTS). 5) Cell proliferation was evaluated using CyQuant® Cell Proliferation Assay. Results. In this work, we systematically evaluated the doses and time effect of the customised media on the differentiation potential of ADSCs. Our results showed significant differences in the cell performance between the conditions investigated. Interestingly, ADSCs presented enhanced tendon marker expression (mRNA and protein level) and collagen content. The different tendon and ECM markers analysed by RT-PCR showed doses and time-dependent effect, establishing a connection with. its role in the tissue. We believe this could offer a possible regenerative treatment without overstimulation. Despite the condition, ADSCs presented 95%–100% viability and proliferation values, demonstrating the non-toxic effect of the media. Conclusion. This study contributes to the knowledge of differentiation potential of ADSCs in tendon repair. Furthermore, the tendon phenotype generated in the 2D cultures changes when different variables are investigated. Knowing the molecular basis and conformations of the tendon phenotype is key in tendon research. Hence we believe these results can show a new paradigm in tendon repair, making possible to select more suitable treatments depending on the status of the injury on the patients. Acknowledgements. This work was supported by Rosetrees Trust, Arthritis Research UK and the Universityof East Anglia