Background.
INTRODUCTION. Retrieval and clinical studies of metal-on-metal (MoM) bearings have associated increased wear. 1. and elevated patient ion levels. 2. with steep
The purpose of this study was to examine the utility of the acetabular component introducer as a tool to intra-operatively predict implant inclination in total hip arthroplasty. This study investigated (1) the correlation between intra-operative photographic assessment of
Introduction. Wear plays a key role in the clinical outcome of total hip replacements (THR). In addition, increased frictional moment can stress the implant interfaces which may lead to high torsional loadings in the intermodular taper junction (fretting) and cup loosening and to the development of noise (squeaking). Against the background of larger head diameters (increased range of motion and decreased risk of dislocation), the friction induced by the joint articulation is of particular interest. As of now, the investigation of friction with the use of relevant joint kinematics and loadings are limited to numerical studies. Experimental approaches use simplified models which do not take into consideration complex activities. Thus, with the aim of this study is the identification of articular frictional moments that consider critical in vivo loading conditions and kinematics as well as the clinical
INTRODUCTION. Ceramic-on-ceramic hip replacements have generated great interest in recent years due to substantial improvements in manufacturing techniques and material properties. 1. Microseparation conditions that could occur due to several clinical factors such as head offset deficiency, medialised cup combined with laxity of soft tissue resulting in a translation malalignment, have been shown to cause edge loading, replicate clinically relevant wear mechanisms. 2,3. and increase the wear of ceramic-on-ceramic bearings. 3,4. The aim of this study was to investigate the influence of increasing the femoral head size on the wear of ceramic-on-ceramic bearings under several clinically relevant simulator conditions. MATERIALS AND METHODS. The wear of size 28mm and 36mm ceramic-on-ceramic bearings (BIOLOX® Delta, CeramTec, Germany) was determined under different in vitro conditions using the Leeds II hip simulator. For each size bearing, two clinical
Introduction. Variations in component position can lead to dynamic separation and edge loading conditions. In vitro methods have been developed to simulate edge loading conditions and replicate stripe wear, increased wear rate, and bimodal wear debris size distribution, as observed clinically [1, 2]. The aim of this study was to determine the effects of translational and rotational positioning on the occurrence of dynamic separation and severity of edge loading, and then investigate the wear rates under the most severe separation and edge loading conditions on an electromechanical hip joint simulator. Materials and Methods. A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX®delta, PINNACLE®, DePuy Synthes, UK) hip replacements. Three axes of rotation conditions (ISO 14242-1 [3]) was applied to the femoral head. This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3)
Introduction. Increased wear rates [1, 2] and acetabular rim fracture [3] of hip replacement bearings reported clinically have been associated with edge loading, which could occur due to rotational and/or translational mal-positioning [4]. Surgical mal-positioning can lead to dynamic microseparation mechanisms resulting in edge loading conditions. In vitro microseparation conditions have replicated stripe wear and the bi-modal wear debris distribution observed clinically [5, 6]. The aim of this study was to investigate the effect of steep
Introduction. Many authors have described component position and leg length discrepancy (LLD) after total hip arthroplasty (THA) as the most important factors for good postoperative outcomes. However, regarding the relationships between component position and different approaches for THA, the optimal approach for component position and LLD remains unknown. The aims of this study were to compare these factors among the direct anterior, posterolateral, and direct lateral approaches on postoperative radiographs retrospectively, and determine which approach leads to good orientation in THA. Methods. We retrospectively evaluated 150 patients who underwent unilateral primary THA in our department between January 2009 and December 2014, with the direct anterior, posterolateral, or direct lateral approach used in 50 patients each. Patients with significant hip dysplasia (Crowe 3 or 4), advanced erosive arthritis, prevented osteotomy of the contralateral hip, and body mass index (BMI) of more than 30 were excluded. The mean age, sex, and preoperative diagnosis of the affected hip were equally distributed in patients who underwent THA with the different approaches. The mean BMI did not differ significantly among the groups. The radiographic measurements included
Introduction. Component positioning is of great importance in total hip arthroplasty (THA) and navigation systems can help guide surgeons in the optimal placement of the implants. We report on a newly developed navigation system which employs an inertial measurement unit (IMU) to measure acetabular
Hip resurfacing arthroplasty (HRA) is a bone conserving alternative to total hip arthroplasty. We present the early 1 and 2-year clinical and radiographical follow-up of a novel ceramic-on-ceramic (CoC) HRA in a multi-centric Australian cohort. Patient undergoing HRA between September 2018 and April 2021 were prospectively included. Patient-reported outcome measures (PROMS) in the form of the Forgotten Joint Score (FJS), HOOS Jr, WOMAC, Oxford Hip Score (OHS) and UCLA Activity Score were collected preoperatively and at 1- and 2-years post-operation. Serial radiographs were assessed for migration, component alignment, evidence of osteolysis/loosening and heterotopic ossification formation. 209 patients were identified of which 106 reached 2-year follow-up. Of these, 187 completed PROMS at 1 year and 90 at 2 years. There was significant improvement in HOOS (p< 0.001) and OHS (p< 0.001) between the pre-operative, 1-year and 2-years outcomes. Patients also reported improved pain (p<0.001), function (p<0.001) and reduced stiffness (p<0.001) as measured by the WOMAC score. Patients had improved activity scores on the UCLA Active Score (p<0.001) with 53% reporting return to impact activity at 2 years. FJS at 1 and 2-years were not significantly different (p=0.38). There was no migration, osteolysis or loosening of any of the implants. The mean acetabular
Imageless computer navigation systems have the potential to improve acetabular cup position in total hip arthroplasty (THA), thereby reducing the risk of revision surgery. This study aimed to evaluate the accuracy of three alternate registration planes in the supine surgical position generated using imageless navigation for patients undergoing THA via the direct anterior approach (DAA). Fifty-one participants who underwent a primary THA for osteoarthritis were assessed in the supine position using both optical and inertial sensor imageless navigation systems. Three registration planes were recorded: the anterior pelvic plane (APP) method, the anterior superior iliac spines (ASIS) functional method, and the Table Tilt (TT) functional method. Post-operative acetabular cup position was assessed using CT scans and converted to radiographic inclination and anteversion. Two repeated measures analysis of variance (ANOVA) and Bland-Altman plots were used to assess errors and agreement of the final cup position. For inclination, the mean absolute error was lower using the TT functional method (2.4°±1.7°) than the ASIS functional method (2.8°±1.7°, ρ = .17), and the ASIS anatomic method (3.7°±2.1, ρ < .001). For anteversion, the mean absolute error was significantly lower for the TT functional method (2.4°±1.8°) than the ASIS functional method (3.9°±3.2°, ρ = .005), and the ASIS anatomic method (9.1°±6.2°, ρ < .001). All measurements were within ± 10° for the TT method, but not the ASIS functional or APP methods. A functional registration plane is preferable to an anatomic reference plane to measure intra-operative acetabular
Introduction. Computer navigation is a highly sophisticated tool in orthopedic surgery for component placement in total hip arthroplasty (THA). In order to apply it adequately it is of upmost importance that the targets the surgeon is trying to hit are well-defined. This concept considers all four component orientations:
The purpose of this preliminary study was to evaluate the feasibility and accuracy of HipAlign (OrthAlign, Inc., USA) system for cup orientation in total hip arthroplasty (THA). The subjects of this study were 5 hips that underwent primary cementless THA via a posterior approach in the lateral decubitus position. Evaluation 1; after reaming acetabular bone, a trial cup was placed in the reamed acetabulum in an aimed alignment using HipAlign. Then, the trial cup alignment was measured using HipAlign and CT-based navigation system in the radiographic definition. Evaluation 2; a cementless cup was placed in the reamed acetabular in an aimed alignment using CT-based navigation and cup alignment was measured using both methods. After operation, we measured the cup alignment using postoperative CT in each patient. In the results, the average
Introduction. In order to reduce polyethylene wear and incidence of osteolysis, and improve the long-term durability of total hip arthroplasty (THA), highly cross-linked polyethylene was introduced for clinical use in substitution for conventional polyethylene. We performed 35 cementless THAs between December 2000 and February 2002, and cross-linked polyethylene was used in these surgeries. The purpose of this study is to research linear wear rate of these hips, and to find the risk factor for high wear rate. Patients and Methods. 32 hips (26 patients) among the 35 could be evaluated at more than 10 years postoperatively. One hip required reoperations due to infection at 8 years postoperatively, and two were lost to followup in less than 10 years. There were 2 males and 24 females, and the observation period was 11.4 years in average (range 10?13 years). The age at the time of operation was 49.4 years in average (range 24?67 years), and body mass index was 22.4 in average (15?34). We used AHFIX total hip prostheses (KYOCERA Medical Corporation) for both acetabular and femoral replacement, and 22 mm Zirconia head was used in all cases. The median cup diameter was 46 mm (range 42?50). Osteolysis and loosening of the implant was evaluated on the anteroposterior radiograph of the hip. Using software for wear measurement (Hip Analysis Suite), linear wear rate and
Introduction. Edge loading of hip replacements may result in plastic deformation, creep and wear at the rim of the cup and potentially fatigue failure. Variations in component positioning can lead to dynamic separation and edge loading [1]. The aim of this study was firstly to investigate the effects of translational and rotational positioning on the dynamic separation and severity of edge loading, and secondly to determine the wear rates of metal-on-polyethylene bearings under the more severe separation and edge loading conditions. Materials and Methods. A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter metal-on-polyethylene hip replacements (Marathon™, DePuy Synthes Joint Reconstruction, Leeds, UK). This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3)
Introduction and Aims. In order to improve the longevity and design of an implant, a wide range of pre-clinical testing conditions should be considered including variations in surgical delivery, and patients' anatomy and biomechanics. The aim of this research study was to determine the effect of the acetabular
Introduction. The safe zone of the acetabular cup for THA was discussed based on the AP X-ray films of hip joints. A supine position is still used to determine the cup position for CAOS such as navigation systems. There were few data about the implant positions after THA in standing positions. The EOS X-Ray Imaging Acquisition System (EOS system) (EOS imaging Inc, Paris, France) allows image acquisition with the patients in a standing or sitting position. We can obtain AP and lateral X-ray images with high-quality resolution and low dose radiation exposure. Recently, we have obtained the EOS system for the first time in Japan. We investigated 3D accuracy of the EOS system for implant measurements after THA. Patients and Methods. We measured the implant angles of the 68 patients (59 females and 9 males, average age: 61y.o.) who underwent THA using the EOS system. The
Acetabular cup positioning remains a real challenge and component malpositioning after total hip arthroplasty (THA) can lead to increased rates of dislocation and wear. It is a common cause for revision THA. A novel 3D imageless mini-optical navigation system was used during THA to provide accurate, intraoperative, real-time, and non-fluoroscopic data including component positioning to the surgeon. This retrospective comparative single surgeon and single approach study examined acetabular component positioning between traditional mini-posterolateral THA and mini-posterolateral THA using the 3D mini-optical navigation system. A retrospective chart review was conducted of 157 consecutive (78 3D mini-optical navigation and 79 traditional non-navigation methods) THAs performed by the senior author using a mini-posterolateral approach at an ambulatory surgery center and hospital setting. Two independent reviewers analyzed postoperative radiographs in a standardized fashion to measure acetabular component positioning. Demographic, clinical, surgical, and radiographic data were analyzed. These groups were found to have no statistical difference in age, gender, and BMI (Table I). There was no difference between groups in acetabular components in the Lewinnek safe zone, 31.2% vs 26.6% (p = 0.53). Cup anteversion within the safe zone did not differ, 35.1% vs 40.5% (p = 0.48); while
Introduction and Aims. There are many surgical, implant design and patient factors that should be considered in preclinical testing of hip replacement which are not being considered in current standards. The aim of this study was to develop a preclinical testing method that consider surgical positioning, implant design and patient factors and predict the occurrence and severity of edge loading under the combination of such conditions. Then, assess the safety and reliability of the implant by predicting the wear, deformation and damage of the implant bearings under worst case conditions. Methods. Ceramic-on-ceramic (CoC, 36mm, BIOLOX. ®. delta, Pinnacle. ®. , DePuy Synthes, UK) and metal-on polyethylene (MoP, 36mm, Marathon®, Pinnacle. ®. , DePuy Synthes, UK) bearings were used for this study on multi-station multi-axis hip joint simulators. Two factors were varied,
Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. CT scans of each cadaver were imported in an imaging software. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. The offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. The shortest distance between each shell and cable was measured. To determine the influence of