Advertisement for orthosearch.org.uk
Results 1 - 20 of 74
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 68 - 68
1 Mar 2017
Oladokun A Bryant M Hall R Neville A
Full Access

Introduction. Fretting corrosion at the Head-Neck taper interface of Large Metal on Metal (MoM), Metal on Polymer (MoP) and Ceramic on Ceramic (CoC) total hip arthroplasty (THA) remains a clinical concern. Ceramic femoral heads have gained a lot of attention more recently as a possible way to mitigate/reduce the dissolution of Cobalt Chromium ions. The objective of this study is to assess the fretting corrosion currents emanating from four material combinations for which Ti6Al4V and Co28Cr6Mo are the neck components of Co28Cr6Mo and BIOLOX®delta femoral heads at three different cyclic loads. Method. 12/14 Ti6Al4V and Co28Cr6Mo spigots (designed to geometrically represent the stem) were impacted against Ø36mm Co28Cr6Mo and BIOLOX®delta femoral heads with a static force of 2kN as shown in Figure 1. The tapers were immersed in 25% v/v diluted Foetal Bovine Serum, PBS balance and 0.03% Sodium Azide at room temperature. In-situ electrochemistry was facilitated using a 3-eletrode cell arrangement whereby the neck components were the working electrode, Ag/AgCl was the reference electrode and a platinum counter electrode completed the cell. All combinations were held at a potential of 0V vs. Ag/AgCl and the cyclic load applied unto each couple were 1kN, 3kN and 5kN at 1Hz consecutively (see Figure 2). The fretting corrosion currents were converted into cumulative charge transferred (Q) by integrating the wear enhanced corrosion current. Results and Discussion. Bergmann et al.1 plotted the loading profile of a patient weighing 1000N doing various daily living activities. In their study, the range in loading cycles vary from 1kN (standing on one leg) to ∼9kN (stumbling). For this study, Figure 2 shows the sinusoidal loading profile used and the corresponding charge transferred as a result of wear enhanced corrosion. The results reveal an increase in the cumulative charge for all four combinations as cyclic load increases. While for all combinations, no negligible amount of cumulative charge was measured at 1kN, no significant difference was observed at 3kN and at 5kN, the charge transferred from both MoM and CoM fretting couples where Ti6Al4V is the neck component were significantly lower than the couples with Co28Cr6Mo neck (see figure 3). The BIOLOX®delta – Ti6Al4V couple was observed to generate the least wear enhanced corrosion current. This, we observe, is due to thick agglomerated oxides resulting from wear and corrosion products which can adhere to the anodic fretting interface (see figure 3). Conclusion. This study reveals that for both MoM and CoM combinations, the charge transferred through wear enhanced corrosion of Ti6Al4V prove to be significantly lower than the combinations with Co28Cr6Mo alloy. Furthermore, this study proposes that the agglomeration of wear and corrosion products (oxides) can lead to the reduction of fretting corrosion currents at modular fretting interfaces as seen in combinations involving Ti6Al4V alloys. This is relevant as titanium alloys are known to form thick oxides at fretting contacts. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 5 - 5
1 Dec 2022
Li T Beaudry E Westover L Chan R
Full Access

The Adams-Berger reconstruction is an effective technique for treating distal radioulnar joint (DRUJ) instability. Graft preparation techniques vary amongst surgeons with insufficient evidence to support one technique over another. Our study evaluated the biomechanical properties of four graft preparation techniques. Extensor tendons were harvested from fresh frozen porcine trotters obtained from a local butcher shop and prepared in one of three configurations (n=5 per group): tendon only; tendon prepared with non-locking, running suture (2-0 FiberLoop, Arthrex, Naples, FL) spaced at 6 mm intervals; and tendon prepared with suture spaced at 12 mm intervals. A fourth configuration of suture alone was also tested. Tendons were allocated in a manner to ensure comparable average diameters amongst groups. Biomechanical testing occurred using custom jigs simulating radial and ulnar tunnels attached to a Bose Electroforce 3510 mechanical testing machine (TA Instruments). After being woven through the jigs, all tendons were sutured end-to-end with 2-0 PROLENE suture (Ethicon). Tendons then underwent a staircase cyclic loading protocol (5-25 Newtons [N] at 1 hertz [Hz] for 1000 cycles, then 5-50 N at 1 Hz for 1000 cycles, then 5-75 N at 1 Hz for 1000 cycles) until graft failure; if samples did not fail during the protocol, they were then loaded to failure. Samples were visually inspected for mode of failure after the protocol. A one-way analysis of variance was used to compare average tendon diameter; post-hac Tuhey tests were used to compare elongation and elongation rate. Survival to cyclic loading was analyzed using Kaplan-Meier survival curves with log rank. Statistical significance was set at a = 0.05. The average tendon diameter of each group was not statistically different [4.17 mm (tendon only), 4.33 mm (FiberLoop spaced 6 mm), and 4.30 mm (FiberLoop spaced 12 mm)]. The average survival of tendon augmented with FiberLoop was significantly higher than tendon only, and all groups had significantly improved survival compared to suture only. There was no difference in survival between FiberLoop spaced 6 mm and 12 mm. Elongation was significantly lower with suture compared to tendon augmented with FiberLoop spaced 6 mm. Elongation rate was significantly lower with suture compared to all groups. Modes of failure included rupture of the tendon, suture, or both at the simulated bone and suture and/or tendon interface, and elongation of the entire construct without rupture. In this biomechanical study, augmentation of porcine tendons with FiberLoop suture spaced at either 6 or 12 mm for DRUJ reconstruction significantly increased survival to a staircase cyclic loading protocol, as suture material was significantly stiffer than any of the tendon graft configurations


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 63 - 63
1 Dec 2016
Mutch J Cracchiolo A Keating P Lemos S
Full Access

The absence of menisci in the knee leads to early degenerative changes. Complete radial tears of the meniscus are equivalent to total meniscectomy and repair should be performed if possible. The purpose of this study was to biomechanically compare the cross suture, hashtag and crosstag meniscal repairs using all-inside implants for radial tears. Radial tears were created at the mid-body of 36 fresh-frozen lateral human menisci and then repaired, in randomiSed order, with Fast-Fix™ 360s (Smith & Nephew, Andover, MA) using the cross suture, hashtag and crosstag techniques. The repaired menisci were tested using an Instron Electropuls E10000 (Instron, Norwood, MA). The tests consisted of cyclic loading from 5 to 30N at 1Hz for 500 cycles, then a load to failure test. Displacement following cyclic loading, load at 3mm of displacement, load to failure, and stiffness were recorded. Any differences between repairs were assessed using Kruskal-Wallis and Mann Whitney tests (p<0.05). Cross suture repairs displaced more following cyclic loading and resisted less load to failure than both the hashtag and crosstag repairs. However, these differences were not statistically significant. The average displacement following cyclic loading of cross suture, hashtag, and crosstag repairs was 4.34 mm (±2.02 mm), 3.46 mm (±2.12 mm), and 3.24 mm (±1.52 mm) respectively (p=0.33). Maximal load to failure was 64.83 N (±17.41 N), 74.52 N (±9.03 N), and 74.98N (±10.50N), respectively (p=0.419). All-inside cross suture, hashtag and crosstag repairs all displaced >3mm with cyclic loading, which is the threshold for meniscal insufficiency. This contrasts previous studies using inside-out sutures, where crosstag and hashtag repairs resisted cyclic loading (< 3mm). Inside-out suturing for radial tears of the lateral meniscus currently remains the gold standard


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 9 - 9
1 Mar 2017
Wannomae K Micheli B Konsin Z Muratoglu O
Full Access

Introduction. Oxidation of ultrahigh molecular weight polyethylene (UHMWPE) can lead to failure of implants used in total joints. Cyclic loading is postulated to be one mechanism of in vivo oxidation in UHMWPE components as one previous study has shown [1]. We developed an accelerated aging test that incorporated compressive cyclic loading that the UHMWPE components would be exposed to in vivo. Surgeons are moving towards larger femoral heads in hip arthroplasty and removing less bone in knee arthroplasty necessitating thinner UHMWPE components. We hypothesized that, in this accelerated aging test, thinner UHMWPE components would be more susceptible to oxidation caused by the cyclic loading due to higher stresses in the material. Materials and Methods. All samples tested in this study were Conventional PE: GUR1050 was machined into test specimens, vacuum packaged and gamma sterilized. Test samples were blocks 100 mm × 89 mm in cross-section with 3 different thicknesses: 1 mm, 3 mm, and 10 mm (n=3 each). Three cylinders were cored out of each test sample to serve as controls (Fig 1a) that were physically separated and thereby isolating the oxidation attributable to an applied compressive cyclic load. The controls were placed back into the holes from where they were cored during testing. Compressive loading was administered by a 12.5 mm diameter applicator affixed to a hydraulic test frame (Fig 1b), and all testing was done at 80°C in air. A sinusoidal compressive cyclic stress between 1 and 10 MPa was applied at 5 Hz for 7 days. Microtomed thin films from all samples were analyzed via Fourier Transform Infrared Spectroscopy (FTIR) to quantify oxidation [2] after testing. Oxidation was measured through the thickness of the sample at targeted points along the length from directly underneath the center of the load applicator to 10mm away (Fig 1a). Oxidation was also measured through the thickness of the cylindrical controls. Results. The oxidation profiles of each sample at 0.0mm (Fig 2a) and 3.0mm (Fig 2b) from the center point of load application showed that as one decreases the thickness of the test sample the oxidation levels of the sample increase. Both locations showed increased oxidation over the control samples. Discussion. Cyclic loading increased the rate of oxidation of gamma sterilized UHMWPE. The oxidation also increased with decreasing thickness of the UHMWPE samples. This oxidation could potentially accelerate the long term oxidative instability and could contribute to the delamination failure of tibial inserts. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 95 - 95
23 Feb 2023
Grupp T Reyna AP Bader U Pfaff A Mihalko W Fink B
Full Access

ZrN-multilayer coating is clinically well established in total knee arthroplasty [1-3] and has demonstrated significant reduction in polyethylene wear and metal ion release [4,5]. The goal of our study was to analyze the biotribological behaviour of the ZrN-multilayer coating on a polished cobalt-chromium cemented hip stem. CoCr28Mo6 alloy hip stems with ZrN-multilayer coating (CoreHip®AS) were tested versus an un-coated version. In a worst-case-scenario the stems with ceramic heads have been tested in bovine serum in a severe cement interface debonding condition under a cyclic load of 3,875 N for 15 million cycles. After 1, 3, 5, 10 & 15 million cycles the surface texture was analysed by scanning-electron-microscopy (SEM) and energy-dispersive x-ray (EDX). Metal ion concentration of Co,Cr,Mo was measured by inductively coupled plasma mass spectroscopy (ICP-MS) after each test interval. Based on SEM/EDX analysis, it has been demonstrated that the ZrN-multilayer coating keeps his integrity over 15 million cycles of severe stem cemented interface debonding without any exposure of the CoCr28Mo6 substrate. The ZrN-multilayer coated polished cobalt-chromium cemented hip stem has shown a reduction of Co & Cr metal ion release by two orders of a magnitude, even under severe stem debonding and high interface micro-motion conditions. ZrN-multilayer coating on polished cobalt-chromium cemented hip stems might be a suitable option for further minimisation of Co & Cr metal ion release in total hip arthroplasty. Clinical evidence has to be proven during the next years


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 29 - 29
23 Apr 2024
Ahmed T Upadhyay P Menawy ZE Kumar V Jayadeep J Chappell M Siddique A Shoaib A
Full Access

Introduction. Knee dislocations, vascular injuries and floating knee injuries can be initially managed by a external fixator. Fixator design constructs include the AO pattern and the Diamond pattern. However, these traditional constructs do not adhere to basic principles of external fixation. The Manchester pattern knee-spanning external fixator is a new construct pattern, which uses beam loading and multiplanar fixation. There is no data on any construct pattern. This study compares the stability of these designs. Materials & Methods. Hoffman III (Stryker, USA) external fixation constructs were applied to articulated models of the lower limb, spanning the knee with a diamond pattern and a Manchester pattern. The stiffness was loaded both statically and cyclically with a Bose 3510 Electroforce mechanical testing jig (TA Instruments). A ramp to load test was performed initially and cyclical loading for measurement of stiffness over the test period. The results were analysed with a paired t-test and ANOVA. Results. The mean stiffness with the diamond pattern fixator was significantly less stiff than the Manchester pattern fixator – by a factor of 3 (40N/mm vs 115N/mm). Displacement increased in all patterns over simulated loading equating to six weeks. The diamond pattern demonstrated a 50%% increase in displacement over time. The Manchester pattern demonstrated only 20% increase in displacement over time. These are all statistically significant (p<0.01). Conclusions. The aim of an external fixator in knee dislocations and vascular injuries is to provide stability, prevent displacement and protect repairs. Vascular injuries often require fixation for several weeks to protect a repair. The Manchester pattern, applying the principles of external fixation, provides a stiffer construct and also confers greater stability over the time a fixator may be required. We commend this more informed design for the management of knee dislocations and vascular injuries


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 38 - 38
23 Feb 2023
Ernstbrunner L Almond M Rupasinghe H Jo O Zbeda R Ackland D Ek E
Full Access

The extracortical single-button (SB) inlay repair is one of the most preferred distal biceps tendon repair techniques. However, specific complications such as neurovascular injury and non-anatomic repairs have led to the development of techniques that utilize intracortical double-button (DB) fixation. To compare the biomechanical stability of the extracortical SB repair with the anatomical DB repair technique. Controlled laboratory study. The distal biceps tendon was transected in 18 cadaveric elbows from 9 donors. One elbow of each donor was randomly assigned to the extracortical SBor anatomical DB group. Both groups were cyclically loaded with 60N over 1000 cycles between 90° of flexion and full extension. The elbow was then fixed in 90° of flexion and the repair construct loaded to failure. Gap-formation and construct stiffness during cyclic loading, and ultimate load to failure was analysed. After 1000 cycles, the anatomical DB technique compared with the extracortical SB technique showed significantly less gap-formation (mean difference 1.2 mm; p=0.017) and significantly more construct stiffness (mean difference 31 N/mm; p=0.023). Ultimate load to failure was not significantly different comparing both groups (SB, 277 N ±92 vs. DB, 285 N ±135; p=0.859). The failure mode in the anatomical DB group was significantly different compared with the extracortical SB technique (p=0.002) and was due to fracture avulsion of the BicepsButton in 7 out of 9 specimens (vs. none in SB group). Our study shows that the intracortical DB technique produces equivalent or superior biomechanical performance to the SB technique. The DB repair technique reduces the risk of nerve injury and better restores the anatomical footprint of biceps tendon. The DB technique may offer a clinically viable alternative to the SB repair technique


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 39 - 39
23 Feb 2023
Jo O Almond M Rupasinghe H Jo O Ackland D Ernstbrunner L Ek E
Full Access

Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs. 24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate load to failure, defined by a marked decrease in the load displacement curve. After 500 cycles, there was no statistically significant difference between the three groups in gap-formation (p = 0.179). Ultimate load to failure was significantly higher in Group 3 compared to Group 1 (286N vs. 167N; p = 0.022), but not to Group 2 (286N vs. 246N; p = 0.604). There were no statistically significant differences in stiffness (Group 1: 504N/mm; Group 2: 564N/mm; Group 3: 512N/mm; p = 0.712). Peri-implant fracture was the primary mode of failure for all three groups, with Group 3 demonstrating the lowest rate of peri-implant fractures (Group 1: 6/8; Group 2: 7/8, Group 3: 4/8; p = 0.243). The lateral locking plate with orthogonal AP locking screw fixation in the lateral fragment demonstrated the greatest ultimate failure load, followed by the lateral locking plate with CC stabilization. The use of orthogonal screw fixation in the distal fragment may negate against the need for CC stabilization in these types of fractures, thus minimizing surgical dissection around the coracoid and potential complications


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 69 - 69
1 Dec 2022
Clarke M Beaudry E Besada N Oguaju B Nathanail S Westover L Sommerfeldt M
Full Access

Meniscal root tears can result from traumatic injury to the knee or gradual degeneration. When the root is injured, the meniscus becomes de-functioned, resulting in abnormal distribution of hoop stresses, extrusion of the meniscus, and altered knee kinematics. If left untreated, this can cause articular cartilage damage and rapid progression of osteoarthritis. Multiple repair strategies have been described; however, no best fixation practice has been established. To our knowledge, no study has compared suture button, interference screw, and HEALICOIL KNOTLESS fixation techniques for meniscal root repairs. The goal of this study is to understand the biomechanical properties of these fixation techniques and distinguish any advantages of certain techniques over others. Knowledge of fixation robustness will aid in surgical decision making, potentially reducing failure rates, and improving clinical outcomes. 19 fresh porcine tibias with intact medial menisci were randomly assigned to four groups: 1) native posterior medial meniscus root (PMMR) (n = 7), 2) suture button (n = 4), 3) interference screw (n = 4), or 4) HEALICOIL KNOTLESS (n = 4). In 12 specimens, the PMMR was severed and then refixed by the specified group technique. The remaining seven specimens were left intact. All specimens underwent cyclic loading followed by load-to-failure testing. Elongation rate; displacement after 100, 500, and 1000 cycles; stiffness; and maximum load were recorded. Repaired specimens had greater elongation rates and displacements after 100, 500, and 1000 cycles than native PMMR specimens (p 0.05). The native PMMR showed greater maximum load than all repair techniques (p 0.05). In interference screw and HEALICOIL KNOTLESS specimens, failure occurred as the suture was displaced from the fixation and tension was gradually lost. In suture button specimens, the suture was either displaced or completely separated from the button. In some cases, tear formation and partial failure also occurred at the meniscus luggage tag knot. Native PMMR specimens failed through meniscus or meniscus root tearing. All fixation techniques showed similar biomechanical properties and performed inferiorly to the native PMMR. Evidence against significant differences between fixation techniques suggests that the HEALICOIL KNOTLESS technique may present an additional option for fixation in meniscal root repairs. While preliminary in vitro evidence suggests similarities between fixation techniques, further research is required to determine if clinical outcomes differ


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 34 - 34
1 Dec 2016
Pathy R Sturnick D Blanco J Dodwell E Scher D
Full Access

Fixation of tendon transfers about the foot in children typically involves creating a bone tunnel through which a suture is passed and tied over an external button. An internal suspension system, such as the Endobutton (Smith & Nephew) is an alternative fixation method which has demonstrated excellent fixation strength and minimal intraosseous tunnel displacement in various adult procedures. Application of the Endobutton technique has no risk of skin ulceration, does not require suture removal and may provide more secure fixation. The purpose of this study is to compare the biomechanical properties of the external button and Endobutton fixation techniques. Our primary outcome measure was intra-osseous displacement of the suture, during both static and dynamic loading, in cadaver feet. Nine adult cadaver feet were utilised. A bone tunnel was drilled in the lateral cuneiform and #1 braided non-absorbable suture was passed through the tunnel. One end was secured to a carabiner to be attached to the materials testing system and the other to the fixation device. The external button and Endobutton fixation techniques were tested once in each cadaver, randomising the order of testing to minimise bias. Each fixation technique underwent static and dynamic cyclic loading. A custom Matlab script was used to process video and materials testing system data. The relative displacement of the suture within the bone tunnel, as a function of time and load magnitude, was recorded during static and dynamic cyclic loading. Both fixation groups were analysed and compared for statistical significance using a paired T-test and an alpha value of 0.05. The Endobutton group had significantly less displacement within the bone tunnel, during both static and dynamic loading, than the external button. The average displacement during static loading was 0.42 mm for the Endobutton and 2.17 mm for the external button (p=0.0019). Similarly, during dynamic cyclic loading, the mean displacement was 0.32 mm for the Endobutton and 0.66 mm for the external button (p=0.0115). The Endobutton internal suspension technique demonstrates significantly less displacement during static and dynamic loading than the external button, during biomechanical testing in cadaver feet. The Endobutton may provide superior fixation than the traditional external button technique for tendon transfers in children. In addition, this technique avoids the risk of skin ulceration from the button and the need for suture removal


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 102 - 102
1 Feb 2020
DiGeorgio C Yegres J VanDeven J Stroud N Cheung E Grey S Yoo J Deshmukh R Crosby L Roche C
Full Access

Introduction. Little guidance exists regarding the minimum screw length and number necessary to achieve fixation with reverse shoulder arthroplasty (rTSA). The goal of this study is to quantify the pre- and post-cyclic baseplate displacements associated with two baseplate designs of different sizes using multiple screw lengths and numbers in a low density polyurethane bone substitute model. Methods. The test was conducted according to ASTM F 2028–17. The baseplate displacements of standard and small reverse shoulder constructs (Equinoxe, Exactech, Inc.) were quantified in a 15pcf polyurethane block (Pacific Research, Inc.) before and after cyclic testing with an applied load of 750N for 10,000 cycles. Baseplates were constructed using 2 or 4 screws with 3 different poly-axial locking compression screw lengths: 4.5×18mm, 4.5×30mm, and 4.5×46mm. Five of each configuration were tested for a total of 30 specimens for each baseplate. A two-tailed, unpaired student's t-test (p<0.05) compared baseplate displacements before and after cyclic loading in both the superior-inferior (S/I) and anterior-posterior (A/P) directions. The standard and small results were then compared. Results. All standard and small reverse glenoid baseplates remained well-fixed after cyclic loading in the low-density bone substitute model regardless of screw length or number. The average pre- and post-cyclic displacement for baseplates with 2 screws was significantly greater than that of baseplates with 4 screws in both the A/P and S/I directions. The average pre- and post-cyclic displacements for baseplates with 18mm screws were significantly greater than baseplates with 46mm screws in the A/P and S/I directions, post-cyclic displacement with 18mm screws was significantly greater than with 30mm screws in the A/P and S/I directions, and post-cyclic displacement with 30mm screws was significantly greater than with 46mm screws in the S/I direction only. Few differences in fixation were observed between baseplate sizes. Statistically significant difference was reached for post cyclic S/I displacement for 30mm (small baseplate superior) and 46mm screws (standard baseplate superior). Discussion and Conclusions. The results demonstrate that rTSA glenoid displacement is impacted by both the number and length of screws for both standard and small baseplate sizes. Regardless of the number of screws, the use of longer screws was associated with significantly better initial fixation. Additionally, the use of more screws was associated with significantly better fixation irrespective of screw length in the A/P direction. None of the tested devices catastrophically failed, demonstrating that adequate fixation can be achieved with as little as two 18mm screws for the baseplates utilized. However, this screw configuration was associated with the largest pre- and post-cyclic displacements, so it is assumed to be at a greater risk for aseptic loosening. If using 4 screws is not feasible in a given case, the results suggest that using longer screws can be used to improve fixation. The results of the small and standard baseplates were comparable for the given lengths and quantities of screws, suggesting that the reduced surface area of the small baseplate has no detrimental impact on fixation. Care should be made when extrapolating these results to glenoid defects. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 45 - 45
1 Mar 2017
Tarallo L Mugnai R Catani F
Full Access

Background. Currently, stailess steel, titanium and carbon-fiber reinforced polyetheretherketone (CF-PEEK) plates are available for the treatment of distal radius fractures. Since the possibility to create a less rigid fixation may represent an advantage in case of ostheoporotic or poor quality bone, the aim of this study is to compare the biomechanical properties of these three materials in terms of bending stiffness with a single static load and after cyclical loading, simulating physiologic wrist motion. Materials and Methods. Three volar plating systems with fixed angle were tested: Zimmer stainless steel volar lateral column (Warsaw, IN); Hand Innovations titanium DVR (Miami, FL); Lima Corporate CF-PEEK DiPHOS-RM (San Daniele Del Friuli, Udine, Italy). For each type of plate tested four right synthetic composite bone radii were used. An unstable, extraarticular fracture was simulated by making an 8 mm gap with a saw starting 12 mm proximal to the articular surface of the radius on the distal radio-ulnar joint side. The osteotomies were made perpendicular to the long axis of the bone to allow for a consistent fracture gap on the dorsal and volar sides of the radius. Plates were implanted using all the distal and proximal fixation holes [Fig. 1]. Each synthetic radius model was potted in methylmethacrylate and tested in a bi-axial servo-hydraulic test frame (MTS Minibionix 858, universal testing machine) for load to failure by advancing a cobalt chrome sphere centered over the articular surface at a constant rate of displacement of 5 mm/min. The sphere was advanced until the construct failed or the dorsal edges of the fracture met. The resultant force was defined as bending stiffness pre fatigue. Three constructs for each plate were then dynamically loaded for 6000 cycles of fatigue at a frequency of 10Hz, with a load value corresponding to the 50% of the previously calculated bending strength. Finally, the constructs were loaded to failure, measuring the bending stiffness post fatigue. Results. All fracture constructs survived all phases of the cyclic loading testing. The mean bending stiffness pre fatigue was higher for the Zimmer plate (155.23±1.91 N/mm), in comparison to Hand Innovations (138.67±4.72 N/mm), and DiPHOS-RM (124.75±3.60 N/mm) [Fig. 2]. After cyclic loading, stiffness increased significantly of a mean 24% for the Zimmer plate (190.42±4.33 N/mm); 33% for the Hand Innovations (186.57±1.71 N/mm); and 18% for the DiPHOS-RM (146.28±1.52 N/mm) [Fig. 2–3]. Conclusions. CF-PEEK plate is less stiff than stainless steel and titanium plates, with an elastic modulus more similar to bone as well as the ability to withstand prolonged fatigue strain. From these preliminary data it might be assumed that the CF-PEEK plates could provide a sufficiently stable osteosynthesis, flexible enough to unload the implant-bone interface, minimising peak stresses at the bone- implant interface, making them particularly suitable for fracture fixation in osteoporotic patients. A proper patient selection (avoiding incompliant or non collaborative) should be performed using CF-PEEK plates to avoid possible implant breakage consequent to a fall or a second trauma on the injuried wrist until the complete fracture healing. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 137 - 137
1 Feb 2017
Gilbert J Grostefon J Mali S Kim J Ouellette E
Full Access

Introduction. Mechanically assisted crevice corrosion (MACC) of head-neck modular taper junctions is prevalent in virtually all head neck tapers in use today. To date, no clear in vitro tests of design, material or surgical elements of the modular taper system have been reported that show which factors principally affect MACC in these tapers. Possible elements include seating load, head-neck offset, surface roughness, taper engagement length, material combination, angular mismatch, and taper diameter. The goals of this study were to use an incremental fretting corrosion test method. 1. to assess the above 7 elements using a design of experiments approach. The hypothesis is that only one or two principal factors affect fretting corrosion. Methods. A 2. 7-2. design of experiment test (7 factors, ¼ factorial, n=32 total runs, 16 samples per condition per factor) was conducted. Factors included: Assembly Force (100, 4000N), Head Offset (1.5, 12 mm), Taper Locking Position (Mouth, Throat), Stem Taper Length (0.44, 0.54 in), Stem Taper Roughness (Ground, Ridged), Taper Diameter (9/10, 12/14), and Stem Material (CoCrMo, Ti-6Al-4V). The heads were CoCrMo coupled with taper coupons (DePuy Synthes, Warsaw, IN). Test components were assembled wet and seated axially with 100 or 4000N assembly force. The assemblies were immersed in PBS and potentiostatically held at −50mV vs. Ag/AgCl. Incremental cyclic loads were applied vertically to the head at 3Hz until a 4000N maximum load was reached (See Fig. 1). Fretting currents at 4000 N cyclic load were used for comparisons while other parameters, including onset load, subsidence, micromotion and pull off load were also captured. Statistical analysis was performed using Pareto charts and Student's T-tests for single factor comparisons (P < 0.05 was statistically significant). Results. Average fretting corrosion currents at 4000 N cyclic load ranged from 0 to 23 µA for all test specimens. The primary factors that statistically affected fretting corrosion currents were head-neck offset (P<0.05) and assembly load (P<0.05). Test factors with the most significance are shown in the Pareto chart of effects (Fig 2). Assembly force, head offset, and the interaction between these two factors were the most significant effects (see Fig 3). All other factors had diminishing effects on fretting current. Note that there is a correlation between fretting currents and pull off load (Fig. 3c). A number of interactive effects were seen between factors on various output parameters (e.g., subsidence, pull off load, onset load) as well. Discussion. This work demonstrates that the principal factors affecting fretting corrosion are seating load and head-neck offset. Material combination, taper diameter, engagement length, roughness and angular mismatch were less significant effectors of fretting corrosion. This test assesses early fretting corrosion response but does not necessarily predict long-term performance where crevices and solution changes may be important. Significance. This work shows a relative comparison of the effects of multiple design, material and surgical elements on the early fretting corrosion behavior of modular tapers in vitro. Head offset and seating loads represent the most significant factors amongst those studied. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 52 - 52
1 Apr 2019
Roche C Yegres J Stroud N VanDeven J Wright T Flurin PH Zuckerman J
Full Access

Introduction. Aseptic glenoid loosening is a common failure mode of reverse shoulder arthroplasty (rTSA). Achieving initial glenoid fixation can be a challenge for the orthopedic surgeon since rTSA is commonly used in elderly osteoporotic patients and is increasingly used in scapula with significant boney defects. Multiple rTSA baseplate designs are available in the marketplace, these prostheses offer between 2 and 6 screw options, with each screw hole accepting a locking and/or compression screw of varying lengths (between 15 to 50mm). Despite these multiple implant offerings, little guidance exists regarding the minimal screw length and/or minimum screw number necessary to achieve fixation. To this end, this study analyzes the effect of multiple screw lengths and multiple screw numbers on rTSA initial glenoid fixation when tested in a low density (15pcf) polyurethane bone substitute model. Methods. This rTSA glenoid loosening test was conducted according to ASTM F 2028–17; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in a 15 pcf low density polyurethane block (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. To evaluate the effect of both screw fixation and screw number, glenoid baseplates were constructed using 2 and 4, 4.5×18mm diameter poly-axial locking compression screws (both n = 5) and 2 and 4, 4.5×46mm diameter poly-axial locking compression screws (both n = 5). A two-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements to evaluate each screw length (18 vs 46mm) and each screw number (2 vs 4). Results. All glenoid baseplates remained well-fixed after cyclic loading in the low density bone substitute block, regardless of screw length or screw number. As described in Table 1, the average pre- and post-cyclic displacement for baseplates with 18mm long screws was significantly greater than that of baseplates with 46mm long screws in both the A/P and S/I directions, with exception of displacements for 4 screws S/I-pre cyclic and 2 screws A/P-post cyclic loading. As described in Table 2, the average pre- and post-cyclic displacement for all baseplates with 2 screws was significantly greater than that of all baseplates with 4 screws, regardless of screw length in the A/P and S/I directions. Discussion and Conclusions. These results of this study demonstrate that rTSA glenoid baseplate fixation is impacted by both the number of screws and by the length of screws, with longer screws and more screws associated with significantly better initial fixation. However, it should be noted that none of the tested devices catastrophically failed in this non-defect/low-density model, demonstrating that adequate fixation can be achieved with as little as 2×18mm screws for some baseplate types. Care should be made when extrapolating these results to that of other designs. This study is limited by its use of only one implant design and by its use of a polyurethane substrate without any defect; future work should evaluate the effect of screw length and screw number in with multiple different prostheses in different densities of bone with and without defects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 504 - 504
1 Dec 2013
Roche C Stroud N DiPaola M Flurin PH Zuckerman J Wright T
Full Access

Introduction. Initial fixation of noncemented implants is critical to achieve a stable bone/implant interface during the first few months after surgery to potentiate bone in-growth and avoid aseptic loosening. Numerous reverse shoulder glenoid implant designs have been conceived in an attempt to improve implant performance and decrease the rate of aseptic glenoid loosening, commonly reported to be 5%. Design variations include: baseplate profile, baseplate size, backside geometry, center of rotation, surface finish and coatings, fixation screw diameters, number of fixation screw options, and type of screw fixation. However, little comparative biomechanical data exist to substantiate one design consideration over another. To that end, this study quantified glenoid fixation before and after cyclic loading of simulated abduction of 6 different reverse shoulder glenoid designs when secured to a low density polyurethane bone substitute block. Methods. A displacement test quantified fixation of 6 different reverse shoulder designs: 38 mm Equinoxe standard offset (EQ), 38 mm Equinoxe lateral offset (EQL), 36 mm Depuy Delta III (DRS), 36 mm Zimmer, (ZRS), 32 mm neutral DJO RSP (DJO), and a 36 mm Tornier BIO-RSA (BIO), secured to a 0.24 g/cm. 3. polyurethane block as a shear (357 N) and compressive (50 N) load was applied before and after cyclic loading. (Figure 1) Glenoid displacement was measured relative to the block using dial indicators in the directions of the applied loads along the superior/inferior axis. A cyclic test rotated each glenosphere (n = 7 for each design) about a 55° arc of abduction at 0.5 Hz for 10k cycles as 750N was constantly applied. (Figure 2) Each implant was cycled using a 145° humeral liner of the appropriate diameter to ensure each device is subjected to the same shear load. A two-tailed unpaired student's t-test was used to compare pre- and post-cyclic mean displacements between designs; p < 0.05 denotes significance. Results. The average pre-cyclic displacement of the EQ, EQL, DRS, ZRS, DJO, and BIO devices was 181, 137, 186, 381, 238, 232 microns, respectively. The average post-cyclic displacement of the EQ, EQL, DRS, DJO, and BIO devices was 186, 129, 189, 368, 249 microns, respectively. During the cyclic test, 6 of 7 ZRS devices failed at an average of 2603 cycles, 1 of 7 DJO failed at 7342 cycles, and 4 of 7 BIO devices failed at an average of 2926 cycles. All 7 of the EQ, EQL, and DRS devices remained well fixed throughout cyclic loading. Discussion and Conclusions. The results of this study demonstrate significant difference in fixation associated 6 different reverse shoulder designs. Despite many similarities in geometry between these designs, significant differences in fixation were observed between nearly every implant design tested. This suggests that subtle changes in glenoid baseplate design can dramatically impact fixation, particularly in low density bone substitutes which are intended to simulate the bone quality of the recipient population for reverse shoulders. Future work should attempt to isolate which design parameters are the most critical contributors for initial fixation and ultimately, long-term stability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 147 - 147
1 Feb 2017
Grostefon J Nelson W
Full Access

Introduction. The corrosion of modular taper junctions in hip implants is becoming an area of increased research focus. Many design factors have been hypothesized to contribute to this kind of corrosion. The authors' previous research indicated femoral stem taper roughness may influence taper corrosion. The purpose of this study is to determine whether taper roughness significantly affects taper performance. Methods. A 2. 2. design of experiment was conducted with Ti6Al4V 12/14 taper coupons coupled with CoCrMo 12/14 taper 28mm+12 heads (DePuy Synthes, Warsaw, IN) with n=3 samples per test run for a total of 12 samples. The femoral heads and taper coupons were manufactured with “smooth” finishes ranging from R. t. 100–200 µin and “rough” finishes ranging from R. t. 900–1000 µin. Test components were assembled wet (dipped in saline solution and drained) and pressed together with a 4400 N assembly force. The assemblies were immersed in phosphate buffered saline and a potentiostat was used to maintain the potential of the specimen at −50mV vs. Ag/AgCl. Incrementally larger cyclic loads were applied vertically to the head at 3Hz until a 4000N maximum load was reached, then this cyclic load was maintained for an additional 1 million cycles. Results. The long-term average corrosion test results ranged from 0.26 to 2.98 µA among the groups. The “Rough Head – Rough Stem” (Group 1) resulted in the highest average corrosion currents of 1.53 ± 0.75 µA. The “Smooth Head – Smooth Stem” (Group 4) showed the lowest average corrosion currents of 0.20 ± 0.05 µA. ANOVA analysis revealed significant differences between the groups (p>0.05), Tukey-Kramer post-hoc analysis showed a significant difference between groups 1 and 4 only. Discussion. Femoral heads and femoral stems with a smoother taper roughness specification resulted in less measured corrosion compared to components with higher taper roughness specifications under the specified test conditions. Significance. This study demonstrates taper surface roughness is a relevant design factor which could influence taper corrosion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 33 - 33
1 Nov 2016
Morellato J Desloges W Louati H Papp S Pollock J
Full Access

Fractures of the anteromedial facet (AO/OTA 21-B1.1, O'Driscoll Type 2, subtype 3) are associated with varus posteromedial rotational instability of the ulnohumeral joint and early post-traumatic arthritis. The purpose of this study was to examine the stability of plate (locking and non-locking) vs screw constructs in the fixation of anteromedial coronoid facet fractures in a sawbone model. An anteromedial coronoid facet fracture (AO/OTA 21-B1.1) was simulated in 24 synthetic ulna bones. They were then assigned into 3 fracture fixation groups: non-locking plate fixation, locking plate fixation, and dual cortical screw fixation. An AO 2.0 mm screw and plate system was used for the plate fixation groups and 2.0 mm cortical screws were used for the screw-only group. Following fixation, each construct was potted in bismuth alloy and secured to a servohydraulic load frame. Each construct was cycled in tension and then in compression at 0.5Hz. For both cycling modalities, an incremental loading pattern was used starting at 40 N and increased by 20 N every 200 cycles up to 200N. Fracture fragment displacement was recorded with an optical tracking system. Following cyclic loading each construct was loaded to failure (displacement >2 mm) at 10mm/min. Tension cycling – All constructs in the plated groups (locking and non-locking constructs) survived the cyclic tension loading protocol (to 200N) with maximum fragment displacement of 12.60um and 14.50um respectively. There was no statistical difference between the plated constructs at any load level. No screw-only fixed construct survived the tension protocol with mean force at failure of 110N (range 60–180N). Compression Testing – All constructs in the plated groups (locking and non-locking constructs) survived the cyclic compression loading protocol (to 200N), while all but one of the screw-only fixation constructs survived. Fracture fragment displacement was significantly greater in the screw-only repair group across all loading levels when compared to the plated constructs. There was no statistically significant difference in fragment motion between the locking and non-locking groups. Failure Testing – The maximum load at failure in the screw-only group (281.9 N) was significantly lower than locking and non-locking constructs (587.0 N and 515.5N respectively, p <0.05). There was no difference between the locking and non-locking group in mean load to failure or mean stiffness. Screw construct stiffness (337.2 N/mm) was lower than the locking and non-locking constructs (682.9 N/mm and 479.1 N/mm respectively) however this did not reach statistical significance (p=0.051). Fixation of anteromedial coronoid fractures is best achieved with a plating technique. Locking plates did not offer any advantage over conventional plates. Isolated screw fixation might not provide adequate stability for these fractures which could result in loss of reduction leading to post-traumatic arthrosis or instabilility


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 196 - 196
1 Dec 2013
Pearce S Walter W Gillies M
Full Access

The design of the femoral prosthesis in cementless total hip arthroplasty is known to affect the initial strains in the cortex during implantation and in the early postoperative time period. High strains have a direct influence on periprosthetic fracture. This study compares the existing ABGII stem, which is proximally coated with a grit blasted titanium surface with hydroxyapatite coating with a prototype that has a rougher titanium plasma spray proximal coating. The Australian National Joint registry results 2011 reported the ABG2 femoral component cumulative percent revision (CPR) of 6.5 (93.5% survival), which compares favourably with equivalent stems with 10 year CPR data such as the Taperloc 6.6 and Corail 7.3. Six pairs of fresh-frozen cadaveric femurs were mounted in blocks according to ISO guidelines in single leg stance setup. Five strain gauges were attached around the neck of the femur and then prepared according to routine operative techniques to accept the femoral prosthesis. Cortical strains were measured during insertion of the prosthesis with an instrumented mallet attached to an accelerometer. Subsequently, force-displacement readings were taken during cyclical loading on a servo-hydraulic machine and finally the stems were tested to failure. Our results showed significantly less strain during cyclical loading of the stem with increased surface roughness (p < 0.05). They also showed no significant differences loads/strains during impaction (p = 0.159), no significant difference in micromotion (p = 0.148) and no significant difference in load-to-failure (p = 0.37)


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 5 - 5
1 May 2016
Roche C Stroud N Palomino P Flurin P Wright T Zuckerman J DiPaola M
Full Access

Introduction. Achieving prosthesis fixation in patients with glenoid defects can be challenging, particularly when the bony defects are large. To that end, this study quantifies the impact of 2 different sizes of large anterior glenoid defects on reverse shoulder glenoid fixation in a composite scapula model using the recently approved ASTM F 2028–14 reverse shoulder glenoid loosening test method. Methods. This rTSA glenoid loosening test was conducted according to ASTM F 2028–14; we quantified glenoid fixation of a 38mm reverse shoulder (Equinoxe, Exactech, Inc) in composite/dual density scapulae (Pacific Research, Inc) before and after cyclic testing of 750N for 10k cycles. Anterior defects of 8.5mm (31% of glenoid width and 21% of glenoid height; n=7) and 12.5mm (46% of glenoid width and 30% of glenoid height; n=7) were milled into the composite scapula along the S/I glenoid axis with the aid of a custom jig. The baseplate fixation in scapula with anterior glenoid defects was compared to that of scapula without an anterior glenoid defect (n = 7). For the non-defect scapula, initial fixation of the glenoid baseplates were achieved using 4, 4.5×30mm diameter poly-axial locking compression screws. To simulate a worst case condition in each anterior defect scapulae, no 4.5×30mm compression screw were used anteriorly, instead fixation was achieved with only 3 screws (one superior, one inferior, and one posterior). A one-tailed unpaired student's t-test (p < 0.05) compared prosthesis displacements relative to each scapula (anterior defect vs no-anterior defect). Results. All glenoid baseplates remained well-fixed after cyclic loading in composite scapula without a defect and those with an 8.5mm anterior glenoid defect. However, only 6 of the 7 glenoid baseplates remained well-fixed after cyclic loading in scapula with a 12.5mm anterior glenoid defect, where 1 device failed catastrophically at 5000 cycles by loosening from the substrate. As described in Table 1, the average pre- and post-cyclic glenoid baseplate displacement in scapula with 8.5mm and 12.5mm anterior glenoid defects was significantly greater than that of baseplates in scapula without an anterior glenoid defect in both the A/P and S/I directions. Similarly, the average pre- and post-cyclic glenoid baseplate displacement in scapula with 12.5mm anterior glenoid defects was significantly greater than that of baseplates in scapula with 8.5mm anterior glenoid defects in the both the A/P and S/I directions. Discussion and Conclusions. These results demonstrate that reverse shoulder glenoid baseplate fixation was achievable in scapula with an 8.5mm anterior glenoid defect. Given that one sample catastrophically loosened in the 12.5mm anterior defect model, supplemental bone grafting may be required to achieve fixation in 12.5mm anterior glenoid defects with reverse shoulder arthroplasty. Future work should evaluate whether adding additional screws mitigates the increased displacement observed in this anterior glenoid defect scenario. This study is limited by its use of polyurethane dual-density composite scapula


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 37 - 37
1 Feb 2021
De Mello Gindri I Da Silva L More ADO Salmoria G De Mello Roesler C
Full Access

Introduction. According to American Joint Replacement Registry, particle mediated osteolysis represents 13 % of the knee revision surgeries performed in the United States. The comprehension of mechanical and wear properties of materials envisioned for TJR is a key step in product development. Furthermore, the maintenance of UHMWPE mechanical properties after material modification is an important aspect of material success. Initial studies conducted by our research group demonstrated that the incorporation of ibuprofen in UHMWPE had a minor impact on UHMWPE physicochemical and mechanical properties. Drug release was also evaluated and resulted in an interesting profile as a material to be used as an anti-inflammatory system. Therefore, the present study investigated the effect of drug release on the mechanical and biological properties of ibuprofen-loaded UHMWPE. Experimental. UHMWPE resin GUR 1020 from Ticona was for sample preparation. Samples with drug concentrations of 3% and 5% wt were consolidated as well as samples without anti-inflammatory addition through compression molding at 150 °C and 5 MPa for 15 minutes. Mechanical properties were evaluated via the tensile strength experiment (ASTM D638) and dynamic mechanic tests. Wear resistance was measured using the pin on disc (POD) apparatus. Finally, cytotoxicity analysis was conducted based on ISO 10993–5. Results. Dynamic-mechanic analysis demonstrated no difference in flexion modulus and stress for all materials (Table 1). No difference was also verified during cyclical loading experiments (Table 1), which indicates that the drug concentration added to material composition did not affect these properties. POD experiments were proposed to evaluate wear resistance of ibuprofen-loaded UHMWPE samples considering the combination of materials similar to those employed in TJR. Results from POD tests are presented in Table 1. Volumetric wear was close to zero for all samples after 200 thousand cycles. Comprehension of the effect of drug release on mechanical properties is essential to estimate how the material will behave after implantation. Therefore, mechanical properties were assessed after 30 days of ibuprofen release and the results were compared with those obtained in samples as prepared (Table 2). Initial results demonstrated a decrease in elastic modulus in samples prepared with ibuprofen. However, no difference was verified between UHMWPE, UHMWPE 3% IBU and UHMWPE 5% IBU after ibuprofen release. Finally, cell viability of UHMWPE 3% IBU and UHMWPE 5% was found to be superior to 100% (Figure 1). Therefore, both materials can be considered nontoxic. Conclusions. Ibuprofen-loaded UHMWPE did not demonstrate a significant influence on the mechanical and biological behavior of UHMWPE. Dynamic-mechanical tests demonstrated constancy for all samples under analysis. Wear testing resulted in gravimetric wear close to zero, for all tested materials. Mechanical properties conducted after 30 days of ibuprofen release also had a positive outcome. Although presenting a difference in modulus prior and after release tests, modulus and tensile yield stress remained inside acceptable range indicated to UHMWPE used in orthopedic implants. Furthermore, after drug elution UHMWPE 3% IBU and UHMWPE 5% IBU recovered original UHMWPE properties. Cytotoxicity assessment was performed and both ibuprofen-based formulations were considered nontoxic according to ISO 10993–5. For any figures or tables, please contact the authors directly