As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC)
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC)
Damage to articular cartilage is a common injury, for which there is no effective treatment. Our aims were to investigate the temporal sequence of the repair of articular cartilage and to define a critical-size
Osteochondral glenoid loss is associated with recurrent shoulder instability. The critical threshold for surgical stabilization is multidimensional and conclusively unknown. The aim of this work was to provide a well- measurable surrogate parameter of an unstable shoulder joint for the frequent anterior-inferior dislocation direction. The shoulder stability ratio (SSR) of 10 paired human cadaveric glenoids was determined in anterior-inferior dislocation direction. Osteochondral
The Masquelet technique is a variable method for treating critical-sized bone
Chondral
Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop tissue-engineered scaffolds for patients suffering from joint disease and trauma. However, chondral lesions cannot be considered independently of the underlying bone tissue. Both the microcirculation and the mechanical support provided with bone tissue must be repaired. One of the distinctive features that distinguish graphene from other nanomaterials is that it can have an inductive effect on both bone and cartilage tissue. In this study, the effect of different concentrations of graphene on the in vivo performance of single-layer poly-ε-caprolactone based-scaffolds is examined. Our hypothesis is that graphene nanoplatelet- containing, robocast PCL scaffolds can be an effective treatment option for large osteochondral
In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large
Growing evidence has suggested that paracrine mechanisms of Mesenchymal stem cell (MSC) may be involved in the underlying mechanism of MSC after transplantation, and extracellular vesicles (EVs) are an important component of this paracrine role. The aim of this study was to investigate the in vitro osteogenic effects of EVs derived from undifferentiated mesenchymal stem cells and from chemically induced to differentiate into osteogenic cells for 7 days. Further, the osteoinductive potential of EVs for bone regeneration in rat calvarial
Introduction. Cancellous and cortical bone used as a delivery vehicle for antibiotics. Recent studies with cancellous bone as an antibiotic carrier in vitro and in vivo showed high initial peak concentrations of antibiotics in the surrounding medium. However, high concentrations of antibiotics can substantially reduce osteoblast replication and even cause cell death. Objectives. To determine whether impregnation with gentamycine impair the incorporation of bone allografts, as compared to allografts without antibiotic. Materials and method. Seventy two healthy rabbits (24 rabbits in each group) were used for this study. Bone
Adrenomedullin is a peptide hormone that has attracted attention with its proliferative and anti-apoptotic effects on osteoblasts in recent years. We investigated the effect of adrenomedullin on healing of the segmental bone
In knee osteoarthritis (OA) patients, a focal cartilage
The treatment of bony
Introduction and Objective. Achilles tendon
Objectives. We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral
Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage
Segmental bone transport (SBT) with an external fixator has become a standard method for treatment of large bone
Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone
Successful reconstruction of bone
In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone