Autologous bone graft has been used in the treatment of complex bone defects for more than a century. Morbidity associated with the harvest of this bone graft has led orthopaedic surgeons to seek alternative therapies in the treatment of long bone non-unions. The aim of this study was to determine whether the use of demineralised bone matrix as a bone healing adjunct improves clinical outcomes in adult patients with long bone non-union. A systematic search was carried out of the peer-reviewed English language literature to identify all relevant studies. The search strategy returned a total of 47 studies. Five of these studies were relevant to the research question. The studies were critically assessed and where appropriate combined in a meta-analysis. 4 non-comparative studies and one comparative study were reviewed. An overall estimate of the rate of union for the five studies was 86% (95%CI: 71–94%). The one comparative study demonstrated the relative risk (RR) of healing was not significantly better than in patients treated with autologous bone graft; RR=1.03 (95%CI 0.96–1.12). There are limited data to support the use of demineralised bone matrix in the treatment of long bone non-union.
The purpose of this study was to understand the effects of terminal sterilisation and residual calcium on human demineralised bone matrix (DBM) in ectopic bone formation in nude rat. The intramuscular implantation of human DBM prepared by the Queensland Bone Bank (QBB) from four donors into eight male athymic rats was used to assess osteoinductivity. The DBM contained different levels of residual calcium and treated with or without gamma-irradiation at 11kGy. At 6 weeks post-implantation, calcium deposition was assessed by manual palpitation and radiological imaging. Tissue morphology and cellular interactions was analysed using various histological staining methods whilst protein expression of anabolic and catabolic biomarkers were examined through immunohistochemistry. All results were then analysed in qualitative, semi-quantitative and quantitative manners and tested for statistical significance. Bone formation was observed in all specimens at the gross level. This was confirmed by histology which revealed bony capsules surrounded by soft tissue in the muscle pockets and differences in tissue components. On a cellular level, variations in osteoclast expression were found between the two groups as well as amongst individual donors through statistical analysis which resulted in an imbalance of the expression of anabolic and catabolic markers. Furthermore, a positive relationship between residual calcium and new bone formation in gamma irradiated DBM samples was found. To date, no studies have compared the effect of calcium in gamma irradiated DBM. Our results suggest that gamma irradiation even at low doses and residual calcium may affect new bone formation. Taken together, this study stresses the importance of selecting ideal conditions for graft processing and the need to identify an optimal level of irradiation and remaining calcium levels that confers a balance between osteoinductivity and sterility.
Introduction.
Aim. To compare a variety of commercially available bone graft substitutes (BGS) in terms of promoting adherence, proliferation and differentiation of osteoprogenitor cells. Materials and methods. A fixed number of porcine mononuclear cells obtained from cancellous bone of the proximal femur was mixed with a standard volume of BGS and then cultured for one week in media followed by two weeks in osteogenic media. BGS included commercially available β-Tricalcium Phosphate (□-TCP), highly porous β-TCP, Hydroxyapatite/Tricalcium phosphate composite, calcium sulphate (CS), Hydroxyapatite (HA),