Cartilage lacks the ability to self-repair when damaged, which can lead to the
Introduction. Hip prosthetic joint infection (PJI) is a debilitating complication following joint replacement surgery, with significant impact on patients and healthcare systems. The INFection ORthopaedic Management: Evidence into Practice (INFORM: EP) study, builds upon the 6-year INFORM programme by developing evidence-based guidelines for the identification and management of hip PJI. Methods. A panel of 21 expert stakeholders collaborated to develop best practice guidelines based on evidence from the previous INFORM research programme. An expert consensus process was used to refine guidelines using RAND/UCLA criteria. The guidelines were then implemented over a 12-month period through a Learning Collaborative of 24 healthcare professionals from 12 orthopaedic centres in England. Qualitative interviews were conducted with 17 members of the collaborative and findings used to inform the
Skeletal muscle tissue engineering has made progress towards production of functional tissues in line with the
There is a lack of carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotic for Staphylococcus aureus deep bone infections (DBIs). RIF is also associated with systemic side effects, and known for causing rapid
Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the natural history of the parameters that are used to assess both was a matter of essence. Nevertheless, clarification the picture of normal value in our society was the main aim of this study. However, Acetabular head index (AHI) and center edge angle (CEA) were the most sensitive indicative parameters for acetabular dysplasia. Hence, they were the main variables used in evaluation of acetabular
Partial meniscectomy patients have a greater likelihood for the
Introduction. Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA
Introduction. Osteoporosis accounts for a major risk factor of fracture-associated disability or premature death in the elderly. Enhancement of bone anabolism for slowing osteoporosis is highly demanding. Exerkine fibronectin type III domain containing 5 (FNDC5) regulates energy metabolism, inflammation, and aging. This study was aimed to investigate whether Fndc5 signaling in osteoblasts changed estrogen deficiency-mediated bone loss or microarchitecture deterioration. Method. Female osteoblast-specific Fndc5 transgenic mice (Fndc5Tg), which overexpressed Fndc5 under the control of key osteoblast marker osteocalcin promoter, were given bilateral ovariectomy to induce estrogen deficiency-mediated osteoporosis. Bone mass, microstructures, and biomechanical properties were quantified using μCT imaging and material testing. Dynamic bone formation was traced using fluorescence calcein. Osteogenic differentiation and adipocyte formation of bone-marrow mesenchymal cells were investigated using von Kossa staining and Nile red staining, respectively. Serum osteocalcin, CTX-1 and TRAP5b levels were quantified using designated ELISA kits. Mitochondrial respiration was investigated using Seahorse Extracellular Flux Analyzer. Result. Fndc5Tg mice developed relatively higher bone mass and microarchitecture than wild-type mice. Fndc5 overexpression attenuated the losses of bone mineral density and trabecular network, including trabecular volume, thickness, and trabecular number, and improved cortical thickness and porosity in ovariectomized mice. Gain of Fndc5 function preserved biomechanical characteristics (maximum load, breaking force, and energy), serum bone formation marker osteocalcin levels, and bone formation rate, whereas it reduced serum bone resorption makers CTX-1 and TRAP5b levels, osteoclast overburden, and marrow adiposis. In vitro, Fndc5 reversed the estrogen deficiency-mediated mineralized matrix underproduction and adipocyte formation of bone-marrow mesenchymal cells, and inhibited osteoclast formation in osteoporotic bone. Mechanistically, Fndc5 activated AMPK signaling, promoting mitochondrial respiration and ATP production to enhance osteoblastic activity. Conclusion. Fndc5 signaling exerted bone-protective actions delaying estrogen deficiency-mediated osteoporosis. This study highlighted a new molecular remedial option for osteoporosis
Introduction. Promoting bone mass homeostasis keeps skeleton away from osteoporosis. a-Ketoglutarate (a-KG) is an indispensable intermediate of tricarboxylic acid cycle (TCA) process for cellular energy production. a-KG mitigates cellular senescence, tissue degeneration, and oxidative stress. We investigated whether a-KG affected osteoblast activity or osteoporosis
This study aimed to characterise the microarchitecture of bone in different species of animal leading to the
Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA
The
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis
Mechanical loading plays an essential role in both tendon
Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro. The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane. Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via immunofluorescence. Subsequently, the model was validated as drug screening platform inducing osteocytes apoptosis and administrating standard anti-osteoporotic drugs. This device has the potential to substitute or minimize animal models in pre-clinical studies of osteoporosis, contributing to pave the way for a more precise and punctual personalized treatment.
Even minor lesions in articular cartilage (AC) can cause underlying bone damage creating an osteochondral (OC) defect. OC defects can cause pain, impaired mobility and can develop to osteoarthritis (OA). OA is a disease that affects nearly 10% of the population worldwide[1], and represents a significant economic burden to patients and society[2]. While significant progress has been made in this field, realising an efficacious therapeutic option for unresolved OA remains elusive and is considered one of the greatest challenges in the field of orthopaedic regenerative medicine[3]. Therefore, there is a societal need to develop new strategies for AC regeneration. In recent years there has been increased interest in the use of tissue-specific aligned porous freeze-dried extracellular matrix (ECM) scaffolds as an off-the-shelf approach for AC repair, as they allow for cell infiltration, provide biological cues to direct target-tissue repair and permit aligned tissue deposition, desired in AC repair[4]. However, most ECM-scaffolds lack the appropriate mechanical properties to withstand the loads passing through the joint[5]. One solution to this problem is to reinforce the ECM with a stiffer framework made of synthetic materials, such as polylactic acid (PLA)[6]. Such framework can be 3D printed to produce anatomically accurate implants[7], attractive in personalized medicine. However, typical 3D prints are static, their design is not optimized for soft-hard interfaces (OC interface), and they may not adapt to the cyclic loading passing through our joints, thus risking implant failure. To tackle this limitation, more compliant or dynamic designs can be printed, such as coil-shaped structures[8]. Thus, in this study we use finite element modelling to create different designs that mimic the mechanical properties of AC and prototype them in PLA, using polyvinyl alcohol as support. The optimal design will be combined with an ECM scaffold containing a tailored microarchitecture mimicking aspects of native AC.
For decades, universities and research centers have been applying modeling and simulation (M&S) to problems involving health and medicine, coining the expression in silico clinical trials. However, its use is still limited to a restricted pool of specialists. It is here proposed an easy-to-use cloud-based platform that aims to create a collaborative marketplace for M&S in orthopedics, where developers and model creators are able to capitalize on their work while protecting their intellectual property (IP), and researcher, surgeons and medical device companies can use M&S to accelerate time and to reduce costs of their research and
Tendinopathies represent the 45% of the musculoskeletal lesions and they are a big burden in clinics. Indeed, despite the relevant social impact, both the pathogenesis and the
Tendon ruptures represent one of the most common acute tendon injuries in adults worldwide, affecting millions of people anually and becoming more prevalent due to longer life expectancies and sports activities. Current clinical treatments for full tears are unable to completely restore the torn tendons to their native composition, structure and mechanical properties. To address this clinical challenge, tissue-engineered substitutes will be developed to serve as functional replacements for total tendon ruptures that closely resemble the original tissue, restoring functionality. Water borne polyurethanes (WBPU) containing acrylate groups, specifically polyethylene glycol methacrylate (PEGMA) or 2-hydroxyethyl methacrylate (HEMA), were combined with mouse mesenchymal stem cells (MoMSCs) and heparin sodium to formulate bioinks for the fabrication of scaffolds via extrusion-based 3D bioprinting.Introduction
Method
Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental hip joint simulators have been used to assess tribology of total hip replacements and recently methods further developed to assess the natural hip joint mechanics. The aim of this study was to evaluate articular surfaces of human cadaveric joints following prolonged experimental simulation under a standard gait cycle. Four cadaveric male right hips (mean age = 62 years) were dissected, the joint disarticulated and capsule removed. The acetabulum and femoral head were mounted in an anatomical hip simulator (Simulation Solutions, UK). A simplified twin peak gait cycle (peak load of 3kN) was applied. Hips were submerged in Ringers solution (0.04% sodium azide) and testing conducted at 1 Hertz for 32 hours (115,200 cycles). Soft tissue degradation was recorded using photogrammetry at intervals throughout testing. All four hips were successfully tested. Prior to simulation, two samples exhibited articular surface degradation and one had a minor scalpel cut and a small area of cartilage delamination. The pre-simulation damage got slightly worse as the simulation continued but no new areas of damage were detected upon inspection. The samples without surface degradation, showed no damage during testing and the labral sealing effect was more obvious in these samples. The fact that no new areas of damage were detected after long simulations, indicates that the loading conditions and positioning of the sample were appropriate, so the simulation can be used as a control to compare mechanical degradation of the natural hip when provoked abnormal conditions or labral tissue repairs are simulated.