Advertisement for orthosearch.org.uk
Results 1 - 20 of 130
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 20 - 20
1 Jul 2020
Beausejour M Parent S Dallaire P Thibeault F El-Hawary R Sanders J Yaszay B Akbarnia B Tohme P Roy-Beaudry M
Full Access

This study addresses a crucial gap in the knowledge of normative spinal growth in children. The objective of this study is to provide detailed and accurate 3D reference values for global and segmental spinal dimensions in healthy children under the age of 11. Radiographic spine examinations of healthy children conducted to rule out scoliosis were reviewed in four scoliosis referral centers in North America. All consecutive children aged three to eleven years old with EOS biplanar good quality x-rays, but without diagnosed growth-affecting pathologies, were included. Postero-Anterior and Lateral calibrated x-rays were used for spine 3D reconstruction and computation of vertebral body height and spine length. Median and interquartile range were calculated from cross-sectional data. Smooth centiles growth curves for 3D True Spinal Length (3DTSL) between T1 and S1, as well as for mid-vertebral heights of T5, T12 and L3, where fit and calibrated from data using the Lambda-Mu-Sigma method (GAMLSS package for R). This method automatically selects the best performing distribution from a familly of choices. Tables of centiles were then predicted from the computed models for selected ages. A total of 638 full spine examinations from asymptomatic patients were reconstructed in 3D, 397 in girls and 241 in boys. Medians and interquartile ranges were calculated for 3DTSL (T1-S1): 285 (24) mm, 314 (26) mm and 349 (31) mm, and for selected vertebral heights T5: 10 (1) mm, 11 (1) mm and 12 (1) mm, T12: 13 (2) mm, 14 (1) mm and 16 (2) mm, and L3: 14 (1) mm, 16 (2) mm and 18 (2) mm, respectively for the 3–6, 6–8 and 8–11 age groups. Centile curves ready for clinical use of the 3DTSL (T1-S1) and of the vertebral heights of T5, T12 and L3 as a function of age were derived for the 5, 10, 25, 50, 75, 90 and 95th centiles. In general, boys presented linear relationships between spinal dimensions and age, and girls presented more diverging trends with increased variance for older ages. Accordingly curves for boys follow the Normal distribution whereas those for girls follow the original Box-Cox-Cole-Green distribution. Model diagnostic tests (normally distributed residuals, adequate wormplots and |Z statistics| < 2) confirmed adequacy of the models and the absence of significant misfit. Accurate reference values were derived for spinal dimensions in healthy children. Spinal dimension charts showed that the spinal lengths and vertebral heights changed relatively constantly across the age groups closely resembling WHO total body height charts. The reference values will help physicians better assess their patients' growth potential. It could also be used to predict expected spinal dimensions at maturity or changes in pathologic conditions as well as to assess the impact of growth friendly interventions in the correction of spinal deformities


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 16 - 16
1 May 2016
Hafez M Sheikhedrees S
Full Access

Background. The knee joint morphology varies according to gender and morphotype of the patients. Objectives. To measure the dimensions of the proximal tibia and distal femur of osteoarthritic knees in a group of patients from the same ethnic group (Arabs) and to compare these measurements with the dimensions of six total knee implants. Patients and methods. Three-dimensional CT reconstructions were used to collect morphologic data from 124 osteoarthritic knees. Anteroposterior and mediolateral measurements were obtained from tibial and femoral bony resection surfaces planned for patient-specific instrumentation (Figures 1 and 2). These measurements were compared to the dimensions for six different types of knee implants. Results. The average tibial mediolateral (tML) and tibial anteroposterior (tAP) measurement for the study group were 74.36±6 mm and 48.94±4.57 mm, respectively; the medial tibial plateau was larger than lateral. The average femur mediolateral (fML) and femur anteroposterior (fAP) measurements for the same group were 72.04±6.6 and 68.1±7.75, respectively. For implant matching, the average tibial aspect ratio was 152.62±12.66 and the femoral average aspect ratio was 106.37±14.34. Differences were found between morphometric measurements of males and females with significantly higher parameters for males when compared to female when compared in AP and mediolateral dimensions. Also, 22.5% of the operated knees had mismatch within 2 size of the same implant. Conclusion. There is significant asymmetry of proximal tibial plateau and femur condyles. Our data suggest mismatch between osteoarthritic Arabian knees and implant designs. These ethnic differences should be considered when designing knee implants


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 21 - 21
1 Jan 2013
Ghosh A Ripley L Housden P
Full Access

Creating cement keyholes (i.e. drilling simple holes in cancellous bone to allow cement filling) is a practice used in multiple scenarios in orthopaedic surgery to ensure improved fixation between the bone-cement interface and as such between bone and prosthesis. It is most commonly used in hip arthroplasty to secure fixation of the cup to the acetabulum by drilling keyholes in acetabulum. However very little research has been conducted into what the dimensions of such cement keyholes should be. The following laboratory based research was performed to provide insight into the optimum dimensions of cement keyholes. The investigator designed a novel arrangement to enable testing of keyholes. Beechwood block models were then made to this design testing keyholes of varying diameters and depths. These were cemented with acrylic bone cement and then loaded to failure. A finite system analysis was also performed. Results show that stresses are concentrated at the base of the keyhole. As such increasing diameter of keyhole infers greater strength, but there is no relationship between depth and strength. This has been further confirmed with finite element analysis. We suggest the width of cement keyholes bears more importance than the depth and propose drilling wide but shallow keyholes


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 64 - 64
1 Jun 2012
Fetto J
Full Access

Non-cemented components have traditionally employed several possible features, among them a stem and/or collar, to achieve proper alignment and initial implant stability within the proximal femoral cavity. The advent of MIS has stimulated an interest in reducing the dimensions of implants, specifically stem length, in order to facilitate introduction and implantation of the component. The consequence of this trend appears to be an increase in early aseptic failure, of some components, due to loosening and migration. Several important questions have arisen. What are the direction of the deforming forces about a hip during daily activities?. What design features should a short stem implant exhibit so as to provide optimum stability against these forces?. Is having a stem an absolute requirement of a femoral component?. What is the minimum “safe” length a stem must have?. How can proper short stem alignment be optimized? Is intra-operative x-ray exposure necessary?. This presentation will discuss the computer modeling, laboratory testing and clinical outcomes of various. component designs; and make suggestions concerning directions for future investigations


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 107 - 107
1 Oct 2012
Vrtovec T Janssen M Pernuš F Castelein R Viergever M
Full Access

Pelvic incidence is as a key factor for sagittal balance regulation that describes the anatomical configuration of the pelvis. The sagittal alignment of the pelvis is usually evaluated in two-dimensional (2D) sagittal radiographs in standing position by pelvic parameters of sacral slope, pelvic tilt and pelvic incidence (PI). However, the angle of PI remains constant for an arbitrary subject position and orientation, and can be therefore compared among subjects in standing, sitting or supine position. Such properties also enable the measurement of PI in three-dimensional (3D) images, commonly acquired in supine position. The purpose of this study is to analyse the sagittal alignment of the pelvis in terms of PI in 3D computed tomography (CT) images.

A computerised method based on image processing techniques was developed to determine the anatomical references, required to measure PI, i.e. the centre of the left femoral head, the centre of the right femoral, the centre of the sacral endplate, and the inclination of the sacral endplate. First, three initialisation points were manually selected in 3D at the approximate location of the left femoral head, right femoral head and L5 vertebral body. The computerised method then determined the exact centres of the femoral heads in 3D from the spheres that best fit to the 3D edges of the femoral heads. The exact centre of the sacral endplate in 3D was determined by locating the sacral endplate below the L5 vertebral body and finding the midpoint of the lines between the anterior and posterior edge, and between the left and right edge of the endplate. The exact inclination of the sacral endplate in 3D was determined from the plane that best fit to the endplate. Multiplanar 3D image reformation was applied to obtain the superposition of the femoral heads in the sagittal view, so that the hip axis was observed as a straight not inclined line and all anatomical structures were completely in line with the hip axis. Finally, PI was automatically measured as the angle between the line orthogonal to the inclination of the sacral endplate and the line connecting the centre of the sacral endplate with the hip axis.

The method was applied to axially reconstructed CT scans of 426 subjects (age 0–89 years, pixel size 0.4–1.0 mm, slice thickness 3.0–4.0 mm). Thirteen subjects were excluded due to lumbar spine trauma and presence of the sixth lumbar segment. For the remaining subjects, the computerised measurements were visually assessed for errors, which occurred due to low CT image quality, low image intensity of bone structures, or other factors affecting the determination of the anatomical references. The erroneous or ambiguous results were detected for 43 subjects, which were excluded from further analysis. For the final cohort of 370 subjects, statistical analysis was performed for the obtained PI. The resulting mean PI ± standard deviation was equal to 46.6 ± 9.2 degrees for males (N = 189, age 39.7 ± 20.3 years), 47.6 ± 10.7 degrees for females (N = 181, age 43.4 ± 19.9 years), and 47.1 ± 10.0 degrees for both genders (N = 370, age 41.5 ± 20.1 years). Correlation analysis yielded relatively low but statistically significant correlation between PI and age, with the correlation coefficient r = 0.20 (p < 0.005) for males, r = 0.32 (p < 0.0001) for females, and r = 0.27 (p < 0.0001) for both genders. No statistically significant differences (p = 0.357) were found between PI for male and female subjects.

This is the first study that evaluates the sagittal alignment of the pelvis in terms of PI completely in 3D. Studies that measured PI manually from 2D sagittal radiographs reported normative PI in adult population of 52 ± 10 degrees, 53 ± 8 degrees and 51 ± 9 degrees for 25 normal subjects aged 21–40, 41–60, and over 60 years, respectively [3], and 52 ± 5 degrees for a cohort of 160 normal subjects [4]. The PI of 47 ± 10 degrees obtained in our study is lower than the reported normative values, which indicates that radiographic measurements may overestimate the actual PI. Radiographic measurements are biased by the projective nature of X-ray image acquisition, as it is usually impossible to obtain the superposition of the two femoral heads. The midpoint of the line connecting the centres of femoral heads in 2D is therefore considered to be the reference point on the hip axis, moreover, the inclination of the sacral endplate in the sagittal plane is biased by its architecture and inclination in the coronal plane. On the other hand, the measurements in the present study were obtained by applying a computerized method to CT images that determined the exact anatomical references in 3D. Perfect sagittal views were generated by multiplanar reformation, which aligned the centres of the femoral heads in 3D. The measurement of PI was therefore not biased by acquisition projection or structure orientation, as all anatomical structures were completely in line with the hip axis. Moreover, the range of the PI obtained in every study (standard deviation of around 10 degrees) indicates that the span of PI is relatively large. It can be therefore concluded that an increased or decreased PI may not necessary relate to a spino-pelvic pathology.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 69 - 69
1 Dec 2022
Dwyer T Hoit G Sellan M Whelan DB Theodoropoulos JS Chahal J
Full Access

The purpose of this study was to determine the incidence of graft-tunnel mismatch (GTM) when performing anatomic anterior cruciate ligament reconstruction (ACLR) using bone-patella tendon-bone (BPTB) grafts and anteromedial portal drilling. Beginning in November 2018, 100 consecutive patients who underwent ACLR by two sports fellowship-trained, orthopedic surgeons using BPTB autograft and anteromedial portal drilling were prospectively identified. The BPTB graft dimensions and the femoral tunnel distance, tibial tunnel distance, intra-articular distance, and total distance were measured. Surgeons determined the depth and angle of tunnels based on the patella tendon graft length dimensions in each case. After passage of the graft, the distance from the distal graft tip to the tibial cortex aperture was measured. GTM was defined as the need for additional measures to obtain satisfactory tibial graft fixation (< 1 5e20 mm of bone fixation). The incidence of mismatch was 6/100 (6%). Five cases involved the graft being too long, with the tibial bone plug protruding excessively from the tibial tunneld4/5 had a patella tendon length ? 50 mm. Three cases were managed with femoral tunnel recession, and two were treated with a free bone plug technique. One patient with a patella tendon length of 35 mm had a graft that was too short, with the tibial bone plug recessed in the tibial tunnel. Of patients whose tibial tunnel distance was within 5 mm of the patella tendon length, only 1/46 (2%) patients had mismatch, whereas 5/54 (9%) of patients who had >5 mm difference had mismatch. The incidence of grafttunnel mismatch after anatomic ACLR using BTPB and anteromedial portal drilling in this study is 6%. To limit the occurrence of GTM where the graft is too long, surgeons should drill tibial tunnel distances within 5 mm of the patella tendon length


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 88 - 88
1 Feb 2020
Dupraz I Bollinger A Utz M Jacobs M Deckx J
Full Access

Introduction. A good anatomic fit of a Total Knee Arthroplasty is crucial to a good clinical outcome. The big variability of anatomies in the Asian and Caucasian populations makes it very challenging to define a design that optimally fits both populations. Statistical Shape Models (SSMs) are a valuable tool to represent the morphology of a population. The question is how to use this tool in practice to evaluate the morphologic fit of modern knee designs. The goal of our study was to define a set of bone geometries based on SSMs that well represent both the Caucasian and the Asian populations. Methods. A Statistical Shape Model (SSM) was built and validated for each population: the Caucasian Model is based on 120 CT scans from Russian, French, German and Australian patients. The Asian Model is based on 80 CT scans from Japanese and Chinese patients. We defined 7 Caucasian and 5 Asian bone models by using mode 1 of the SSM. We measured the antero-posterior (AP) and medio-lateral (ML) dimensions of the distal femur on all anatomies (input models and generated models) to check that those bone models well represent the studied population. In order to cover the whole population, 10 additional bone models were generated by using an optimization algorithm. First, a combined Asian-Caucasian SSM was generated of 92 patients, equally balanced between male and female, Caucasian and Asian. 10 AP/ML dimensions were defined to obtain a good coverage of the population. For a given AP/ML dimension, Markov chain Monte Carlo sampler was used to find the most average shape with AP/ML dimensions as close as possible to the target dimensions. The difference of the AP/ML dimensions of the generated models to the target dimensions was computed. A chi-squared distribution was used to assess how average the resulting shapes were compared to typical patient shapes. Results. The AP-ML dimensions of the 7 Caucasian bones and the 5 Asian bones well cover the range of the respective populations. For the Caucasian Femur, the AP/ML dimensions range from (53,6/64,9mm) for size 1 to (67,7/80,7mm) for size 7. For the Asian Femur, the AP/ML dimension range from (53,0/62,4mm) for size 1 to (60,5/72,4mm) for size 5. The dimensions of the 10 additionally generated bones differed in average (± 1 standard deviation) by 0,2±0,4mm in AP and 0,5±0,5mm in ML to the target dimensions. The maximal deviation was 0,9mm in AP and 1,0mm in ML. All 10 bones had a P-value of P < 10. -27. according to the chi-squared distribution. Conclusion. The proposed models of 7 Caucasian and 5 Asian bones well represent both populations. The 10 additional geometries enable to get a complete coverage of the population. Since they are very close to average, all these bone models provide more generalized reference shapes compared to individual patients. By performing a virtual implantation on those anatomies, the anatomical fit of implants to these populations can be evaluated. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 17 - 17
7 Nov 2023
Rachuene PA Dey R Motchon YD Sivarasu S Stephen R
Full Access

In patients with shoulder arthritis, the ability to accurately determine glenoid morphological alterations affects the outcomes of shoulder arthroplasty surgery significantly. This study was conducted to determine whether there is a correlation between scapular and glenoid morphometric components. Existence of such a correlation may help surgeons accurately estimate glenoid bone loss during pre-operative planning. The dimensions and geometric relationships of the scapula, scapula apophysis and glenoid were assessed using CT scan images of 37 South African and 40 Chinese cadavers. Various anatomical landmarks were marked on the 77 scapulae and a custom script was developed to perform the measurements. Intra-cohort correlation and inter-cohort differences were statistically analysed using IBM SPSS v28. The condition for statistical significance was p<0.05. The glenoid width and height were found to be significantly (p<0.05) correlated with superior glenoid to acromion tip distance, scapula height, acromion tip to acromion angle distance, acromion width, scapula width, and coracoid width, in both the cohorts. While anterior glenoid to coracoid tip distance was found to be significantly correlated to glenoid height and width in the South African cohort, it was only significantly correlated to glenoid height in the Chinese cohort. Significant (p<0.05) inter-cohort differences were observed for coracoid height, coracoid width, glenoid width, scapula width, superior glenoid to acromion tip distance, and anterior glenoid to coracoid tip distance. This study found correlations between the scapula apophyseal and glenoid measurements in the population groups studied. These morphometric correlations can be used to estimate the quantity of bone loss in shoulder arthroplasty patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2021
Sanchez E Schilling C Grupp T Giurea A Verdonschot N Janssen D
Full Access

Introduction. Cementless total knee arthroplasty (TKA) implants use an interference fit to achieve fixation, which depends on the difference between the inner dimensions of the implant and outer dimensions of the bone. However, the most optimal interference fit is still unclear. A higher interference fit could lead to a superior fixation, but it could also cause bone abrasion and permanent deformation during implantation. Therefore, this study aims to investigate the effect of increasing the interference fit from 350 µm to 700 µm on the primary stability of cementless tibial implants by measuring micromotions and gaps at the bone-implant interface when subjected to two loading conditions. Methods. Two cementless e.motion® tibial components (Total Knee System, B. Braun) with different interference fit and surface coating were implanted in six pairs of relatively young human cadaver tibias (47–60 years). The Orthoload peak loads of gait (1960N) and squat (1935N) were applied to the specimens with a custom made load applicator (Figure 1A). The micromotions (shear displacement) and opening/closing gaps (normal displacement) were measured with Digital Image Correlation (DIC) in 6 different regions of interest (ROIs - Figure 1B). Two General Linear Mixed Models (GLMMs) were created with micromotions and interfacial gaps as dependent variables, bone quality, loading conditions, ROIs, and interference fit implants as independent variables, and the cadaver specimens as subject variables. Results. No significant difference was found for the micromotions between the two interference fit implants (gait p=0.755, squat p=0.232), nor for interfacial gaps (gait p=0.474, squat p=0.269). In contrast, significant differences were found for the ROIs in the two dependent variables (p < 0.001). The micromotions in the anterior ROIs (AM and AL) showed fewer micromotions for the low interference fit implant (Figure 2). More closing gaps (negative values) were seen for all ROIs (Figure 3), except in AM ROI during squat, which showed opening gaps (positive values). The posterior ROIs (PM and PL) showed more closing than seen in the anterior ROIs (AM and AL) for both loading configurations. Discussion. The results presented here demonstrate that increasing the interference fit from 350 µm to 700 µm does not affect the micromotions at the implant-bone interface of tibial TKA. While micromotions values were all below the threshold for bone ingrowth (40 µm), closing gaps were quite substantial (∼−150 µm). Since cementless e.motion® TKA components with an interference fit of 350 µm had shown a survival rate of 96.2% after 8.3 years postoperatively, interfacial gaps can be expected to be within a threshold value that can guarantee good primary stability. Moreover, increasing the interference fit to 700 µm can be considered a good range for an interference fit. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 93 - 93
1 Mar 2017
West E Knowles N Ferreira L Athwal G
Full Access

Introduction. Shoulder arthroplasty is used to treat several common pathologies of the shoulder, including osteoarthritis, post-traumatic arthritis, and avascular necrosis. In replacement of the humeral head, modular components allow for anatomical variations, including retroversion angle and head-neck angle. Surgical options include an anatomic cut or a guide-assisted cut at a fixed retroversion and head-neck angle, which can vary the dimensions of the cut humeral head (height, anteroposterior (AP), and superoinferior (SI) diameters) and lead to negative long term clinical results. This study measures the effect of guide-assisted osteotomies on humeral head dimensions compared to anatomic dimensions. Methods. Computed tomography (CT) scans from 20 cadaveric shoulder specimens (10 male, 10 female; 10 left) were converted to three-dimensional models using medical imaging software. An anatomic humeral head cut plane was placed at the anatomic head – neck junction of all shoulders by a fellowship trained shoulder surgeon. Cut planes were generated for each of the standard implant head-neck angles (125°, 130°, 135°, and 140°) and retroversion angles (20°, 30°, and 40°) in commercial cutting guides. Each cut plane was positioned to favour the anterior humeral head-neck junction while preserving the posterior cuff insertion. The humeral head height and diameter were measured in both the AP plane and the SI plane for the anatomic and guide-assisted osteotomy planes. Differences were compared using separate two-way repeated measures ANOVA for each dependent variable and deviations were shown using box plot and whisker diagrams. Results. Guide-assisted cuts tend to be smaller than the anatomic humeral head dimensions. Retroversion angle showed a significant effect on head height, AP, and SI diameters (p=0.002). The effect of head-neck angle was only significant for SI diameter (p<0.001). The largest dimensional deviation was observed at 20 degrees of retroversion and resulted in a 2.5mm decrease in humeral head height, averaged over the range of head-neck values. Conclusion. Where patient's natural anatomy falls outside the range of commercial cutting guides, resection according to the template may result in a deviation from the natural dimensions of the humeral head, which impacts the sizing of the implant head component. This has implications for both manufacturers to create a template that has a larger range of retroversion angles, as well as surgeons' choices in intra-operative planning


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 46 - 46
1 Jan 2016
Miyatake N Sugita T Sasaki A Maeda I Honma T
Full Access

Introduction. Precise implant matching with a resected bony surface is a crucial issue to ensure a successful total knee arthroplasty (TKA). Extremely undersized or oversized components should be avoided. Therefore, we should measure the exact anthropometric data of the resected bony surface preoperatively or intraoperatively. The purpose of this study was to intraoperatively analyze the exact anthropometric proximal tibial data of Japanese patients undergoing TKA and correlate these measurements to the dimensions of current prosthetic systems. Patients and Methods. Three hundred and seventy-three knees in 299 Japanese patients were included in this study. There were 246 women and 53 men with a mean age of 74 (range: 63–85) years. All TKAs were performed by 3 senior surgeons (TS, AK, and NM). The bone cut in the proximal tibia was made perpendicular to the longitudinal axis of the tibia in the frontal plane. Intraoperative measurements of the proximal tibial cut surface were taken after proximal tibial preparation. Akagi's line (center of the posterior cruciate ligament tibial insertion to the medial border of the patellar tendon attachment) was adopted as the anteroposterior axis line of the proximal tibia. A mediolateral (ML) line was drawn perpendicular to Akagi's line. Then, anteroposterior (AP), lateral anteroposterior (lAP), and medial anteroposterior (mAP) lines were drawn as shown in Figure 1. Results. There was a significant positive correlation between lAP and ML dimensions. Although there also was a significant positive correlation between lAP and mAP dimensions, individual knees presented much scatter (Figure 2). The lAP dimension was smaller than the mAP dimension in all knees by a mean of 4.5 ± 1.9 mm. The proximal tibia exhibited asymmetry between the lateral and medial plateaus. The recent data of 177 knees indicated that Akagi's line was located 1.0 ± 1.2 mm medial to the AP line. A comparison of the morphologic data and the dimensions of the implants, one of which was a symmetric tibial component (NexGen: Zimmer, Warsaw, Indiana), and the other asymmetric (Genesis II: Smith & Nephew, Memphis, Tennessee), indicated that an asymmetric tibial component could be beneficial in maximizing the coverage of the tibial plateau. However, the size variation of the asymmetric tibial component was poor and the lAP and mAP dimensions showed much scatter; thus, we should measure the proximal tibia and choose the proper tibial component during surgery. Conclusions. This study provides important reference data that may be useful for designing proper tibial components for Japanese patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 134 - 134
1 Jun 2012
Mahindra P Yamin PM Garg PR Selhi HS Singla S
Full Access

Background. There is paucity of data concerning the morphological dimensions of the distal part of the femur and the proximal part of the tibia in Indian population. The objective of this study was to analyse the exact anatomic data collected from patients undergoing total knee arthroplasty. Methods. Morphologic data from the distal part of the femur and proximal part of the tibia, from 50 knees, were obtained during total knee Arthroplasty, with a microcalliper. The study included 30 women and 20 men, who had a mean age of 65 years. A characterisation of the aspect ratio (the medial-lateral to anterior-posterior dimensions) was made for the proximal aspect of the tibia and distal part of the femur. Results. A significant difference was noticed in the dimensions of males and females. Females were found to have smaller dimensions, and the difference was statistically significant. From the morphologic data no significant difference was noted in the aspect ratio of both femur and tibia in males and females, and between larger and smaller knees. A comparison of the bone dimensions from the study data and the dimensions of the femoral component showed average medial-lateral overhang of +1.9 mm in women. Conclusion. The results of this study will allow manufacturers to make more appropriate determination of the sizes of components for total knee arthroplasty in Indian population having smaller anthropometric measurements than Western populations


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 370 - 370
1 Mar 2013
Zhou C Zhou Z He J Sun J Shen B Yang J Kang P Pei F
Full Access

Background. Recent anthropometric studies have suggested that current design of total knee arthroplasty (TKA) does not cater to racial anthropometric differences. The purpose of this study was to investigate the exact sizing and rotational landmarks of the distal femur collected and its gender differences from a large group of healthy Southern Chinese using 3D-CT measurements, and then compare these measurements to the five total knee prostheses conventionally used in China. Methods. This study evaluated distal femoral geometry in 85 healthy Southern Chinese, included 39 females (78 knees) and 46 males (92 knees) with a mean age of 33.9 years,a mean height of 164.7 cm and a mean weight of 59.9 kg. The width of the articular surface as projected onto the transepicondylar line(ML), anteroposterior dimension (AP), the dimensions from medial/lateral epicondyle to posterior condylar (MEP/LEP) were measured. A characterization of the aspect ratio (ML/AP) was made for distal femur. The angles between the tangent line of the posterior condylar surfaces, the Whiteside line, the transepicondylar line, and the trochlear line were measured. The sulcus angle and hip center-femoral shaft angle were also measured [Fig. 1]. The data were compared with the five total knee prostheses conventionally used in China. In analyzing the data, best-fit lines were calculated with use of least-squares regression. The dimensions are summarized as the mean and standard deviation. Comparisons of dimensions between males and females were made with use of the two-sample t test. A p value of <0.05 indicated a significant effect. Results. Within the population, males had larger ML, AP values and aspect ratio than females (ML: 70.44±3.04 vs. 61.40±2.62 mm, P<0.001; AP: 62.26±2.93 vs. 56.49±2.88 mm, P<0.001; 1.06±0.05 vs. 1.11±0.03, P<0.001). In addition, we found a gradual decrease in the aspect ratio corresponding to an increase in AP dimension, as seen in other studies. The transepicondylar axis was a reliable landmark to properly rotate the femoral component, so we used the MEP and LEP evaluate posterior condylar offset, the values were respectively 28.90±3.00 mm and 22.73±2.67 mm. However, most angles were almost the same between males and females. To evaluate the suitability shape of the femoral components currently used in China, we drawed and calculated best-fit lines for the AP, ML dimensions and aspect ratios of the femur and the five prostheses. For females, there was a significant association between the prostheses size and the amount of overhang, the femoral prostheses for females tended to be too large for a given AP dimension, with larger sizes having more overhang, especially in ML dimensions. In males, the morphologic data tended to be bigger than the prosthetic designs in the ML dimension for a given AP dimension, the femoral aspect ratio was higher for smaller knees and proportionally lower for larger knees[Fig. 2, 3]. Conclusion. Because dimensions of the distal femur and the aspect ratio tend to be smaller in Southern Chinese populations, whereas sulcus angles tend to be larger, designs for knee implants should be modified to improve the outcome of surgical treatment in this population


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 18 - 18
1 May 2021
McDaid C Sharma H Leggett H Scantlebury A Hewitt C
Full Access

Introduction. There are currently no quality of life Patient Reported Outcome Measures (PROMs) that have been validated for patients with conditions requiring lower limb reconstructive surgery. The extent to which current generic and lower limb specific PROMs address relevant dimensions for these patients is unclear. Materials and Methods. We will present an overview of the PROLLIT (Patient-Reported Outcome Measure for Lower Limb Reconstruction) mixed-methods study. PROLLIT aims to establish the adequacy of current PROMS for this population, whether a new measure is required, and to develop a new measure if appropriate. Results. The PROLLIT study consists of three phases:. Phase 1 is currently underway and involves the development of a conceptual model to map the key quality of life constructs relevant to people undergoing reconstructive surgery, to specify the intended population and uses of a PROM in this field. The conceptual model is being developed in a 3 step process: (i) Existing evidence is being collated in a systematic review of published qualitative research (Qualitative Evidence Synthesis); (ii) a multi-site qualitative study of patients, orthopaedic surgeons, specialist nurses and physiotherapists; (iii) an interdisciplinary panel of patients, surgeons, healthcare professionals and methodologists to finalise the conceptual framework based on the findings of the Qualitative Evidence Synthesis (i) and qualitative study (ii). Phase 2 involves mapping the conceptual framework onto existing PROMs measures that are used with this population to determine whether the constructs identified as important by patients and healthcare professionals are reflected in existing PROMS. Phase 3 involves developing a new outcome measure, if deemed necessary/appropriate during Phase 2. Conclusions. Current PROMS may not adequately address the issues relevant to patients recovering from lower limb reconstructive surgery. Phase 1 and 2 will provide robust evidence as to whether this is the case in order to seek funding for research to develop a new measure (Phase 3)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 3 - 3
1 May 2019
Romeo A
Full Access

The advent of modern anatomic shoulder arthroplasty occurred in the 1990's with the revelation that the humeral head dimensions had a fixed ratio between the head diameter and height. As surgeons moved from the concept of balancing soft tissue tension by using variable neck lengths for a given humeral head diameter, a flawed concept based on lower extremity reconstruction, improvements in range of motion and function were immediately observed. Long term outcome has validated this guiding principle for anatomic shoulder replacement with improved longevity of implants, improved patient and surgeon expectations and satisfaction with results. Once the ideal humeral head prosthesis is identified, and its position prepared, the surgeon must use a method to fix the position of the head that is correct in three dimensions and has the security to withstand patient activities and provide maximal longevity. Based again on lower extremity concepts, long stems were the standard of care, initially with cement, and now, almost universally without cement for a primary shoulder replacement. The incredibly low revision rates for humeral stem aseptic loosening shifted much of the attempted innovation to the challenges on the glenoid side of the reconstruction. However, glenoid problems including revision surgery, infections, periprosthetic fractures, and other complications often required the removal of the humeral stem. And, in many cases, the overall results of the procedure and the patient's long-term outcome was affected by the difficulty in removing the stem, leading surgeons to compromise the revision procedure, avoid revision surgery, or add to the overall morbidity with humeral fractures and substantial bone loss. With improved technology, including bone ingrowth methods, better matching of the proximal stem geometry to the humerus, and an understanding that the center of rotation (torque) on the humeral component is at the level of the humeral osteotomy, shorter stems and stemless humeral components were developed, now more than 10 years ago, primarily in Europe. With more than a decade of experience, our European colleagues have shown us that stemless humeral component replacement with a device that has both cortical and cancellous fixation is as effective as a stemmed device, easier to implant as well as revise when needed. The short-term results of the cancellous fixation stemless devices are acceptable, but longer follow-up is needed. Currently, the most widely used humeral components in the USA are short stem components, although the recent FDA approval of numerous stemless devices has initiated a shift from short stems to stemless devices. The truth is, short stem devices have a firm position in the USA surgeons' armamentarium today due to regulatory restrictions. A decade ago, without a predicate on the market, it was not conceivable that a stemless device that was already gaining popularity in Europe would be able to get 510K approval, and therefore would require a lengthy and expensive FDA IDE process. However, shorter stems had already been approved in the USA, as long as the stem length was 7 centimeters, matching the market predicate. Now, in 2018, based on evidence and outcomes, stemless humeral components should be the first choice when treating primary osteoarthritis of the glenohumeral joint. Short stem or longer stem devices should be reserved for those cases where stemless fixation is not possible, which is less than 10% of patients with primary OA of the shoulder


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 37 - 37
1 Jan 2016
Stevens A Surabhi R Jaarsma R Bramwell D Krishnan J
Full Access

Introduction & aims. Different racial groups show variations in femoral morphometry. Femoral anteroposterior measurement and mediolateral measurement are key variables in designing femoral implant for TKR. Their aspect ratio determines the shape and mediolateral sizing for the proper patellofemoral tracking and uniform stress distribution over the resected distal femoral surface. Method. We reviewed the current literature in December 2013 in common medical databases including the Cochrane Library, PubMed and Medline. Keywords included combinations of: Anthropometry, Knee, Arthroplasty, Femur, Morphometry, Geometry. We selected papers including femoral morphometric data collected from populations of different ethnic origins. Papers covered populations in the USA, China, Germany, Thailand, Korea, India, Japan and Malaysia. Results. We have analysed femoral morphometry variables among different ethnic groups from the available data. Gross size of the resected femur can be defined in terms of antero-posterior (AP) and medio-lateral (ML) dimensions, an in the aspect ratio of femoral medio-lateral to femoral antero-posterior dimensions (fML/fAP). The Korean population showed the least value of fAP among all the groups, followed by Thai, Japanese, Indian, Malaysian and Chinese showing the increasing order among the sub-groups of Asian Population. American population shows the next higher fAP measurements from Asian population. German follows, and Arab quantify the largest value of this femoral anthropometric variable. fML varies by huge difference among male and female data in all populations. Thai, Indian, Malaysian, Arab, Japanese, Korean, German, Chinese and American; this sequence is the increasing order of fML. More trapezoid-shaped and narrower ML, this variation in female group leads to over-hang the implant for a given fAP. Generally, the aspect ratios are measured higher in these smaller female knees, and lower in larger male knees. Conclusions. Anthropometric data measuring distal femoral segment in different ethnic groups shows that the Asian population requires custom-fit implant design based on the morphological data. It would be more appropriate to introduce several medio-lateral options in sizing the implant for given antero-posterior dimensions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 38 - 38
1 Mar 2021
Tavakoli A Faber K Langohr G
Full Access

Total shoulder arthroplasty (TSA) is an effective treatment for end-stage glenohumeral arthritis. The use of high modulus uncemented stems causes stress shielding and induces bone resorption of up to 63% of patients following TSA. Shorter length stems with smaller overall dimensions have been studied to reduce stress shielding, however the effect of humeral short stem varus-valgus positioning on bone stress is not known. The purpose of this study was to quantify the effect of humeral short stem varus-valgus angulation on bone stresses after TSA. Three dimensional models of eight male cadaveric humeri (mean±SD age:68±6 years) were created from computed tomography data using MIMICS (Materialise, Belgium). Separate cortical and trabecular bone sections were created, and the resulting bone models were virtually reconstructed three times by an orthopaedic surgeon using an optimally sized short stem humeral implant (Exactech Preserve) that was placed directly in the center of the humeral canal (STD), as well as rotated varus (VAR) or valgus (VAL) until it was contacting the cortex. Bone was meshed using a custom technique which produced identical bone meshes permitting the direct element-to-element comparison of bone stress. Cortical bone was assigned an elastic modulus of 20 GPa and a Poisson's ratio of 0.3. Trabecular bone was assigned varying stiffness based on CT attenuation. A joint reaction force was then applied to the intact and reconstructed humeri representing 45˚ and 75˚ of abduction. Changes in bone stress, as well as the expected bone response based on change in strain energy density was then compared between the intact and reconstructed states for all implant positions. Both varus and valgus positioning of the humeral stem altered both the cortical and trabecular bone stresses from the intact states. Valgus positioning had the greatest negative effect in the lateral quadrant for both cortical and trabecular bone, producing greater stress shielding than both the standard and varus positioned implant. Overall, the varus and standard positions produced values that most closely mimicked the intact state. Surprisingly, valgus positioning produced large amounts of stress shielding in the lateral cortex at both 45˚ and 75˚ of abduction but resulted in a slight decrease in stress shielding in the medial quadrant directly beneath the humeral resection plane. This might have been a result of direct contact between the distal end of the implant and the medial cortex under loading which permitted load transfer, and therefore load-reduction of the lateral cortex during abduction. Conversely, when the implant was placed in the varus angulation, noticeable departures in stress shielding and changes in bones stress were not observed when compared to the optimal STD position. Interestingly, for the varus positioned implant, the deflection of the humerus under load eliminated the distal stem-cortex contact, hence preventing distal load transfer thus precluding the transfer of load


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 224 - 224
1 Sep 2012
Zhou Z Zhou C Shen B Yang J Kang P Pei F
Full Access

Background. Recent anthropometric studies have suggested that current design of total knee arthroplasty (TKA) does not cater to racial anthropometric differences. The purpose of this study was to investigate the exact sizing and rotational landmarks of the distal femur collected from a large group of healthy Southern Chinese using three dimensional computer tomographic measurements, and then compare these measurements to the known dimensions from Caucasian populations. Methods. This study evaluated distal femoral geometry in 125 healthy Southern Chinese, included 58 women (106 knees) and 67 men (134 knees) with a mean age of 35.2±8.11 years, a mean height of 165.5±7.94 cm, and a mean weight of 61.7±9.56 kg. The width of the articular surface as projected onto the transepicondylar line(ML), anteroposterior dimension (AP), the dimensions from medial/lateral epicondyle to posterior condylar (MEP/LEP)were measured. A characterization of the aspect ratio (ML/AP) was made for distal femur[Fig. 1]. The angles between the tangent line of the posterior condylar surfaces, the Whiteside line, the transepicondylar line, and the trochlear line were measured. The sulcus angle and hip center-femoral shaft angle were also measured. Known dimensions from Caucasian populations were compared with the morphologic data collected in this study[Fig. 2]. In analyzing the data, best-fit lines were calculated with use of least-squares regression. The dimensions are summarized as the mean and standard deviation. The differences of rotational landmarks and sizing between the Southern Chinese and Caucasians were assessed with use of the Student t test. A p value of <0.05 indicated a significant effect. Results. Within the Southern Chineses population, males had larger ML and AP values than females (ML: 70.38±3.09 vs. 62.09±2.52mm, P<0.001; AP: 63.68±2.82 vs. 57.83±2.91mm, P<0.001). The results also showed that Southern Chinese knees were generally smaller than Caucasian (ML: 67.27±4.95 vs. 76.8±7.2mm, P<0.001). The femoral aspect ratio of Southern Chinese was significantly smaller than Caucasian (1.09±0.04 vs. 1.28±0.06, P<0.001). In addition, we found a gradual decrease in the aspect ratio corresponding to an increase in anteroposterior dimension in the distal femur of Southern Chinese, as seen in most other studies. The transepicondylar axis was found to be a reliable landmark to properly rotate the femoral component, so we used the femoral condylar MEP and LEP evaluate posterior condylar offset, the values were respectively 28.62±2.18mm and 22.50±2.19mm. From this study, most of the angles were different from Caucasian. Anteroposterior line minus epicondylar line angle was 90.14±1.30° (Caucasian 90.33±2.44°, P>0.05), anteroposterior line minus posterior condylar line angle was 83.18±1.94° (Caucasian 86.82±2.71°, P<0.001), epicondylar line minus posterior condylar line angle was 7.00±1.70° (Caucasian 3.60±2.02°, P<0.001), trochleoepicondylar angle was 12.45±2.34°(Caucasian 4.95±2.15°, P<0.001), sulcus angle was 147.40±4.69° (Caucasian 139.6±6.96°, P<0.001). The angle between mechanical and anatomic axis of the femur was 5.92±0.47°(Caucasian 6.33±2.42°, P<0.001). Conclusion. Because dimensions of the distal femur and the aspect ratio tend to be smaller in Southern Chinese populations, whereas sulcus angles tend to be larger, designs for knee implants should be modified to improve the outcome of surgical treatment in this population. The Larger epicondylar line minus posterior condylar line angles, and the smaller angle between mechanical and anatomic axis seen in Southern Chinese populations also requires us to pay particular attention to surgical technique, in order to ensure patient safety


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 10 - 10
1 Feb 2021
Rahman F Chan H Zapata G Walker P
Full Access

Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH Osteoarthritis Initiative, converted into 3D meshes, and aligned via an anatomic coordinate system algorithm. Geomagic Design X software was used to determine the average anterior-posterior (AP) length. Each knee was then scaled in three dimensions to match the average AP length. Geomagic's least-squares algorithm was used to create an average surface model. This method was validated by generating a statistical shaped model using principal component analysis (PCA) to compare to the least square's method. The averaged knee surface was used to design component system sizing schemes of 1, 3, 5, and 7 (fig 1). A further fifty arthritic knees were modeled to test the accuracy of fit for all component sizing schemes. Standard deviation maps were created using Geomagic to analyze the error of fit of the implant surface compared to the native femur surface. Results. The average shape model derived from Principal Component Analysis had a discrepancy of 0.01mm and a standard deviation of 0.05mm when compared to Geomagic least squares. The bearing surfaces showed a very close fit within both models with minimal errors at the sides of the epicondylar line (fig 2). The surface components were lined up posteriorly and distally on the 50 femurs. Statistical Analysis of the mesh deviation maps between the femoral condylar surface and the components showed a decrease in deviation with a larger number of sizes reducing from 1.5 mm for a 1-size system to 0.88 mm for a 7-size system (table 1). The femoral components of a 5 or 7-size system showed the best fit less than 1mm. The main mismatch was on the superior patella flange, with maximum projection or undercut of 2 millimeters. Discussion and Conclusion. The study showed an approach to total knee design and technique for a more accurate reproduction of a normal knee. A 5 to 7 size system was sufficient, but with two widths for each size to avoid overhang. Components based on the average anatomic shapes were an accurate fit on the bearing surfaces, but surgery to 1-millimeter accuracy was needed. The results showed that an accurate match of the femoral bearing surfaces could be achieved to better than 1 millimeter if the component geometry was based on that of the average femur. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 25 - 25
1 Mar 2021
Sidhu P Smith J Chhina H Abad J Lim B Pike I Cooper A
Full Access

Supracondylar fractures of the humerus (SCH) are the most common fractures sustained following a fall on an outstretched hand in healthy children, and one of the leading causes of hospital admission and surgical intervention. With increasing severity of injury, treatment options become more invasive and the potential for long lasting complications increases. The aim of this study is to examine the causes and circumstances surrounding SCH in public play spaces particularly to determine whether or not the playground equipment implicated in injurious falls is compliant with Canadian Standards Association (CSA) standards. Children aged 6–12 years who sustained SCH while playing at a public play space between 2017 and 2019 were recruited from the paediatric orthopaedic clinic. Public playgrounds within a 50 km radius of the clinic were visited by research assistants. Using GPS coordinates from photographs taken by the children at the site of injury or play structures identified by the children using Google Maps, play structure type, dimensions, height of fall, and the type and depth of the surface material were collected from each site and compared to the relevant CSA standard. Of the 89 SCH injuries reported during the recruitment period, 49 (55%) occurred on public play structures. Thirty-nine injury sites, representing 42 SCH cases, were accessible to conduct site visits and were included in the analysis. Thirteen children (31%) sustained Type One, 19 (45%) were Type Two, and 10 (24%) were Type Three SCHs. The mean child age at injury was 7.13 years. Of the 42 SCH cases, 37 sites had woodchips surfacing (88%); three had rubber (7%), one had cement (2%), and one had sand (2%). Of the 36 sites where woodchip depth measurements could be obtained, only seven (19%) met the minimum CSA depth. Out of the 42 SCH cases, 29 injuries (69%) involved upper body equipment (i.e. monkey bars or similar) and track rides. Fourteen of these 29 injuries (48%) occurred on structures that did not meet CSA standards for fall height. All rotating play structures had less than half of the required clearance between the components. Eighty-six percent of SCH cases occurred in playgrounds where at least one of the required CSA standards was not met. Woodchip surfacing was of particular concern because 81% of woodchip surface depths failed to meet CSA standards. Of the 14 injuries where fall height did not meet CSA standards, 11 (79%) also did not meet minimum CSA surface depth. Field investigation into the characteristics of playgrounds in which children sustain SCH can guide preventative policy and practice measures. Municipalities and school boards should be alerted to the need for regular maintenance of woodchip playground surfacing, in order to remain compliant with the minimum surface depth and prevent serious injuries. Additionally, compliance with minimum surface depths can also decrease fall heights to meet CSA standards. By minimizing the prevalence of SCH injuries occurring on play structures and the need for emergency department visits, the burden to healthcare systems and families of injured children can potentially be reduced