Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo
Abstract. BACKGROUND. Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo
Abstract. Objectives. Mesenchymal stromal/stem cells (MSCs) are increasingly recognized as regulators of immune cells during disease or tissue repair. During these situations, the extracellular matrix (ECM) is very dynamic and therefore, our studies aim to understand how ECM influences the activity of MSCs. Methods. Human MSCs cultured on tissue culture plastic (TCP) and encapsulated within collagen type I, fibrin, or mixed Collagen-Fibrin were exposed to low dose TNFα and IFNɣ. Transcription profiles were examined using bulk RNA sequencing (RNAseq) after 24h of treatment. ELISA, Western blot, qPCR and immunofluorescence were employed to validate RNAseq results and to investigate the significance of transcriptional changes. Flow cytometry evaluated monocyte/macrophage phenotype. Results. Previously, we showed that human MSC expression of TNFAIP6 and CXCL10 in 3D
The management of bone defects and impaired fracture healing remains one of the most challenging clinical problems. Several treatments exist to aid in the healing of large bone defects, including biologics such as recombinant human bone morphogenetic protein-2 (BMP-2), yet all have met with limited success. Regeneration of bone requires a coordinated network of molecular signals where the local mechanical
An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical
Introduction. Civilian fractures have been extensively studied with in an attempt to develop classification systems, which guide optimal fracture management, predict outcome or facilitate communication. More recently, biomechanical analyses have been applied in order to suggest mechanism of injury after the traumatic insult, and predict injuries as a result of a mechanism of injury, with particular application to the field so forensics. However, little work has been carried out on military fractures, and the application of civilian fracture classification systems are fraught with error. Explosive injuries have been sub-divided into primary, secondary and tertiary effects. The aim of this study was to 1. determine which effects of the explosion are responsible for combat casualty extremity bone injury in 2 distinct
Introduction. One method of surgical site infection prevention is lowering intraoperative environmental contamination. We sought to evaluate our hospitals operating room (OR) contamination rates and compare it to the remainder of the hospital. We tested environmental contamination in preoperative, intraoperative and postoperative settings of a total joint arthroplasty patient. Materials & Methods. 190 air settle plates composed of trypsin soy agar (TSA) were placed in 19 settings within our hospital. Locations included the OR with light and heavy traffic, with and without masks, jackets, and shoe covers, sub-sterile rooms, OR hallways, sterile equipment processing center, preoperative areas, post-anesthesia care units, orthopaedic floors, emergency department, OR locker rooms and restrooms, a standard house in the local community, and controls. The plates were incubated in 36 degrees celsius for 48 hours and colony counts were recorded. Numbers were averaged over each individual area. Results. The highest CFU was the OR locker room at 28 CFU/plate/hr. Preoperative & post anesthesia care unit holding areas were 7.4 CFU & 9.6 CFU, respectively. The main orthopaedic surgical ward had 10.0 CFU/plate/hr, while the VIP hospital ward had 17.0 CFU/plate/hr. The OR
Unresolved inflammatory processes in tendon healing have been related to the progression of tendinopathies. Thus, the management of tendon injuries may rely on cell-based strategies to identify and modulate tendon inflammatory cues. Pulsed electromagnetic field (PEMF) has been approved by FDA for orthopedics therapies and has been related to a reduction in pain and to improve healing. However, the influence of PEMF in tendon healing remains largely unknown. Human tendon resident cells (hTDCs) were cultured in an inflammatory
Most western countries have implemented fast-track hip fracture aiming at surgery within 24 hours, since the mortality rate hereafter rises markedly. In Greenland, it is not achievable to operate within 24 hours. Arctic people live in sparsely populated areas and Greenland's population is scattered along the vast coastline. All patients must be chartered to Nuuk by airplane which can take up till several days to weeks, due to logistics and the Arctic weather. This presents a challenge regarding adhering to western guidelines. The operative delay may be acceptable though, as it is the impression that the Greenlandic population survives and endures better than patients of western populations. However, as data are lacking, we aimed to describe mortality among hip fracture patients in Greenland taking frailty and comorbidities into account. All patients with ICD-10 codes DS720, DS721 and DS722 from 2018-2022 were identified as 261 patients diagnosed with hip fractures. Variables including time of diagnosis, time to operation, reasons for delay, ASA-score, Charlson Comorbidity index, time of death, and other possible confounding variables were analyzed. Primary outcome was mortality rates at 30-day post-OP and 1-year post-OP.Introduction
Method
Several previous studies have examined the mechanical
Background. Intervertebral disc cells exist in a challenging physiological
Study Aim. Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain
It is widely accepted that interfragmentary strain stimulus promotes callus formation during secondary bone healing. However, the impact of the temporal variation of mechanical stimulation on fracture healing is still not well understood. Moreover, the minimum strain value that initiates callus formation is unknown. The goal of this study was to develop an active fixation system that allows for in vivo testing of varying temporal distribution of mechanical stimulation and that enables detection of the strain limit that initiates callus formation. We employed a previously established wedge defect model at the sheep tibia. The model incorporates two partial osteotomies directed perpendicularly to each other, thus creating a bone fragment in the shape of a wedge. The defect was instrumented with an active fixator that tilts the wedge around its apex to create a gradient of interfragmentary strain along the cutting line. The active fixator was equipped with a force and displacement sensors to measure the stiffness of the repair tissue during the course of healing. We developed a controller that enabled programming of different stimulation protocols and their autonomous execution during the in vivo experiment. The system was implanted in two sheep for a period of five weeks. The device was configured to execute immediate stimulation for one animal (stimulation from Day 1), and delayed stimulation for the other (stimulation from Day 22). The daily stimulation protocol consisted of 1’000 loading events evenly distributed over 12 hours from 9:00 am to 9:00 pm. The healing progression was monitored by the in vivo stiffness measurements provided by the fixator and by weekly radiographs. The impact of the local strain magnitude on bone formation was qualitatively evaluated on a post-mortem high-resolution CT scan of the animal with immediate stimulation.Introduction and Objective
Materials and Methods
Mesenchymal stem cells (MSCs) are tissue-resident stroma cells capable of modulating immune cells through the secretion of paracrine factors. However, the comparison of MSCs potential, from different sources and submitted to hypoxia within a 3D scaffold, in secreting pro-healing factors has never been investigated. With a chemical composition similar to type I collagen, a major component of connective tissues retrieved in dental pulp, bone and umbilical cord, Hemocollagene® haemostatic foam presented porous and interconnected structure (> 90%) and a relative low elastic modulus of around 60 kPa. All these criteria meet basic requirements for tissue engineering based material. Herein, we assessed and compared the effect of hypoxia (3% O2) on the regulation and release of pro-angiogenic factors (VEGF, b-FGF and IL-8) from bone marrow (BM), Wharton's jelly (WJ) and dental pulp (DP) derived MSCs cultured in Hemocollagene®. After 10 days of culture, qRT-PCR analysis showed an up-regulation of
Little is known about the tissue reactions to various implant materials which coincide with an inflammatory reaction. We used the avridine arthritis rat model to evaluate the tissue response in the synovial, interstitial and subcutaneous tissues after implant insertion. Quantitative immunohistochemistry showed that normal joint synovial tissue is dominated by ED2-positive resident macrophages. Polyethylene implants induced a much stronger foreign-body reaction than titanium implants, as measured by the number of interfacial ED1-positive macrophages. The tissue response to titanium and polyethylene was also vastly different in arthritic synovial tissue compared with control tissue. It is likely that these biomaterials interact differently with inflammatory cells or intermediary compounds. It may be that arthritic synovial tissue produces reactive oxygen intermediates (free radicals) with which titanium has a unique anti-inflammatory interaction in vitro.
Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical
Poor tendon repair is an unsolved issue in clinical practice, due to complex tendon structure. Tendon stem/progenitor cells (TSPCs) play key roles in homeostasis, regeneration, and inflammation regulation in acute tendon injuries, and rely on TGF-β signaling for recruitment into degenerative tendons. In this study, we aimed to develop an in vitro model for tenogenesis adopting a dynamic culture of a fibrin 3D scaffold, bioengineered with human TSPCs collected from both healthy and tendinopathic surgery explants (Review Board prot./SCCE n.151, 29 October 2020). 3D culture was maintained for 21 days under perfusion provided by a custom-made bioreactor, in a medium supplemented with hTGF-β1 at 20 ng/mL. The data collected suggested that the 3D in vitro model well supported survival of both pathological and healthy cells, and that hTGF-β signaling, coupled to a dynamic
Tendon injury is debilitating and recalcitrant. With limited knowledge of disease aitiology we have are lacking in effective treatments for this prevalent musculoskeletal complaint. This presentation will outline our findings over the past few years in which we have demonstrated the importance of the interfascicular matrix (IFM) niche in maintaining healthy tendon function and driving disease progression. 1,2. It will also continue to describe our progress in developing both in vivo and in vitro models to interrogate disease progression. We have developed and validated a rat Achilles tendon overload model, in order to explore the impact of loading on IFM and fascicle structure, and the resulting cell response. Data highlights that structural disruption and inflammatory response both initiate in the IFM region, and can be seen in the absence of demonstrable changes to animal gait, indicating a sub-injury response in the tendon which we hypothesis may drive increased matrix turnover and repair. 3. . We are now looking to interrogate the pathways driving this inflammatory behaviour in an organ-chip model, exploring the interplay between IFM cells and cells within fascicles. We have demonstrated phenotypic distinction of cells from the two niche
Autografts containing bone marrow (BM) are current gold standard in the treatment of critical size bone defects, delayed union and bone nonunion defects. Although reaching unprecedented healing rates in bone reconstruction, the mode of action and cell-cell interactions of bone marrow mononuclear cell (BM-MNC) populations have not yet been described. BM-MNCs consist of a heterogeneous mixture of hematopoetic and non-hematopoetic lineage fractions. Cell culture in a 3D
Low back pain resulting from Interertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect. However, their behaviour in the harsh degenerate