Advertisement for orthosearch.org.uk
Results 1 - 20 of 112
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 47 - 47
1 May 2019
Sierra R
Full Access

Chronic extensor mechanism insufficiency around TKA is a very challenging pathology to treat. An insufficient extensor mechanism negatively affects implant survival and patient outcomes. There are several risk factors for extensor mechanism disruption and the surgeon should be aware and avoid these problems in the perioperative period. In appropriately selected patients, reconstruction of the extensor mechanism is a valid option. Whole extensor mechanism and Achilles tendon allograft reconstruction of the deficient extensor mechanism have been proposed with good early published results. These reconstructions, however, are expensive and with time may stretch and lead to recurrence of an extensor lag. An alternative to allograft, is the use of Marlex mesh as popularised by Browne and Hanssen. This technique uses a knitted monofilament polypropylene mesh that is secured to the patient's native lateral tissue and covered by an appropriately dissected and distalised vastus medialis muscle. The technique can be used for both patellar and quadriceps tendon deficiencies and can be done with or without implant revision and is currently the treatment of choice at the presenter's institution. The surgeon should be aware of the complexity and limitations of these three reconstructive techniques


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 95 - 95
1 May 2014
Windsor R
Full Access

A key component to the success of total knee replacement is the health and integrity of the extensor mechanism. While there are issues related to the patella, such as fracture, dislocation, subluxation, clunk due to peripatellar fibrosis and anterior knee pain, the overall integrity of the extensor mechanism is of tantamount importance in providing an excellent functional outcome. During total knee replacement it is of utmost importance to preserve the anatomic insertion of the patellar tendon on the tibial tubercle. However, after total knee replacement, a fall or extreme osteoporosis of the patella may cause a rupture of the patellar tendon, distally or proximally, and possibly the quadriceps tendon off of the proximal pole of the patella. Simple repairs of the patellar tendon avulsion may involve use of the semitendonosis and gracilis tendons along with primary repair of the tendon. Usually, patella infera develops after such a repair affecting overall strength and function. For severe disruptions of the extensor mechanism that are accompanied by a significant extensor lag, autologous tissue repair may not be possible. Thus, there are three techniques for reconstruction of this difficult problem: Extensor mechanism allograft with bone-patellar tendon-patella-quadriceps tendon, extensor mechanism allograft with os calcis-Achilles tendon construct and Marlex-mesh reconstruction for patellar tendon avulsion. The key to success of extensor mechanism allograft is proper tensioning of the allograft at full extensor and immobilisation for 6 weeks. Rosenberg's early experience showed that the allograft works best placed at maximum tension in extension. Rubash has described the use of the os calcis-Achilles tendon which does not utilise a patellar substitute. Hansen has recently described excellent results with the use of Marlex mesh to act as a structural reinforcement to the patellar tendon when it is avulsed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 101 - 101
1 Apr 2017
Engh C
Full Access

Extensor mechanism complications after or during total knee arthroplasty are problematic. The prevalence ranges from 1–12% in TKR patients. Treatment results for these problems are inferior to the results of similar problems in non-TKR patients. Furthermore, the treatment algorithm is fundamentally different from that of non-TKR patients. The surgeon's first question does not focus on primary fixation; rather the surgeon must ask if the patient needs surgery and if so am I prepared to augment the repair? Quadriceps tendon rupture, periprosthetic patellar fracture, and patellar tendon rupture have similar treatment algorithms. Patients who are able to perform a straight leg raise and have less than a 20-degree extensor lag are generally treated non-operatively with extension bracing. The remaining patients will need surgical reconstruction of the extensor mechanism. Loose patellar components are removed. Primary repair alone is associated with poor results. Whole extensor mechanism allograft, Achilles tendon allograft, and synthetic mesh reconstruction are the current techniques for augmentation. In the acute setting if these are not available hamstring tendon harvest and augmentation is an option. Achilles tendons and synthetic mesh are easier to obtain than and entire extensor mechanism but are limited to patients that have an intact patella and the patella that can be mobilised to within 2–3 cm of the joint line. No matter which technique is used the principles are: rigid distal/tubercle fixation, coverage of allograft/mesh with host tissue to decrease infection, tensioning the augment material in extension, no flexion testing of reconstruction and post-operative extension bracing


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 97 - 97
1 May 2013
Windsor R
Full Access

A key component to the success of total knee replacement is the health and integrity of the extensor mechanism. While there are issues related to the patella, such as fracture, dislocation, subluxation, clunk due to peripatellar fibrosis and anterior knee pain, the overall integrity of the extensor mechanism is of tantamount importance in providing an excellent functional outcome. During total knee replacement it is of utmost importance to preserve the anatomic insertion of the patellar tendon on the tibial tubercle. However, after total knee replacement, a fall or extreme osteoporosis of the patella may cause a rupture of the patellar tendon, distally or proximally, and possibly the quadriceps tendon off of the proximal pole of the patella. Simple repairs of the patellar tendon avulsion may involve use of the semitendonosis and gracilis tendons along with primary repair of the tendon. Usually, patella infera develops after such a repair affecting overall strength and function. For severe disruptions of the extensor mechanism that are accompanied by a significant extensor lag, autologous tissue repair may not be possible. Thus, there are three techniques for reconstruction of this difficult problem: Extensor mechanism allograft with bone-patellar tendon-patella-quadriceps tendon, extensor mechanism allograft with os calcis-Achilles tendon construct and Marlex-mesh reconstruction for patellar tendon avulsion. The key to success of extensor mechanism allograft is proper tensioning of the allograft at full extensor and immobilisation for 6 weeks. Rosenberg's early experience showed that the allograft works best placed at maximum tension in extension. Rubash has described the use of the os calsis-Achilles tendon which does not utilise a patellar substitute. Hansen has recently described excellent results with the use of Marlex mesh to act as a structural reinforcement to the patellar tendon when it is avulsed


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 66 - 66
1 Nov 2016
Engh C
Full Access

Extensor mechanism complications after or during total knee arthroplasty (TKA) are problematic. The prevalence ranges from 1%-12% in TKA patients. Treatment results for these problems are inferior to the results of similar problems in non-TKA patients. Furthermore, the treatment algorithm is fundamentally different from that of non-TKA patients. The surgeon's first question does not focus on primary fixation; rather the surgeon must ask if the patient needs surgery and if so am I prepared to augment the repair? Quadriceps tendon rupture, peri-prosthetic patellar fracture, and patellar tendon rupture have similar treatment algorithms. Patients who are able to perform a straight leg raise and have less than a 20-degree extensor lag are generally treated non-operatively with extension bracing. The remaining patients will need surgical reconstruction of the extensor mechanism. Loose patellar components are removed. Primary repair alone is associated with poor results. Whole extensor mechanism allograft, Achilles tendon allograft, and synthetic mesh reconstruction are the current techniques for augmentation. In the acute setting if these are not available, hamstring tendon harvest and augmentation is an option. Achilles tendons and synthetic mesh are easier to obtain than an entire extensor mechanism but are limited to patients that have an intact patella and the patella that can be mobilised to within 2–3 cm of the joint line. No matter which technique is used the principles are: rigid distal/tubercle fixation, coverage of allograft/mesh with host tissue to decrease infection, tensioning the augment material in extension, no flexion testing of reconstruction and post-operative extension bracing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 8 - 8
1 Jun 2012
Baldini A Manfredini L Mariani PC Barbanti B
Full Access

Extensor mechanism disruption in total knee arthroplasty (TKA) occurs infrequently but often requires surgical intervention. We compared two cohorts undergoing extensor mechanism allograft reconstruction, one group had an extensor mechanism rupture, and the other had a recurrent ankylosed knee. Thirteen consecutive patients with extensor mechanism disruption or ankylosis after TKA were treated. Two different types of extensor mechanism allografts were used: quadriceps tendon-patella-patella tendon-tibial tubercle, and Achilles tendon allograft(Fig1). Demographic factors, diagnosis at extensor failure, Knee Society clinical rating scores, radiographs, and patient satisfaction were recorded. The average time from extensor mechanism disruption to surgery was 6.6 months (range, 1-24 months). At a mean followup of 24 months (range, 6-46 months), all patients were community ambulators. None of the patients showed a postoperative extensor lag. Average postoperative maximum flexion was 97° (90-115°) for the ruptured group and 80° (75-90) for the ankylosed grup. All patients thought their functional status had improved, and 87% were satisfied with the results of the allograft reconstruction (Fig 2, 3, 4, 5). One patient had allograft failure due to recurrent infection after re-revision for sepsis. The total extensor mechanism allograft and Achilles tendon allograft both were successful in the treatment of the failed extensor mechanism and showed promising results for the treatment of the ankylosed knee


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2013
Wansbrough G Tetsworth K
Full Access

High-energy injuries involving the proximal tibia sometimes result in significant soft tissue injuries that may create an incompetent knee extensor mechanism. Reconstruction of the extensor mechanism using the gastrocnemii has been previously described in those patients with tissue loss following either arthroplasty or tumour surgery. In 2009, a single cross-sectional study of eight patients described the technique after trauma, and their outcome at an average of 24 months. Use of a gastrocnemius rotational myoplasty has been described in the literature for six additional cases following trauma. We present our indications, technique and 5-year results of a separate series of four patients in whom the extensor mechanism of the knee was rendered incompetent after direct tissue loss, or subsequent infection, secondary to trauma. In each case, after stabilisation of the periarticular fracture and control of infection, the medial gastrocnemius was employed both to reconstruct the patellar ligament, and to simultaneously restore soft tissue coverage. Three out of 4 patients had excellent outcomes, have returned to their previous occupations and participate in regular sport. The overall mean scores were: Oxford knee Score (38.25), Knee Injury and Osteoarthritis Outcome Score (KOOS) (64.5) and Modified Cincinnati Score (68.25). Mean knee ROM was 5–97 degrees. Video for basic gait analysis was recorded. For those traumatic injuries with the difficult combination of a soft tissue deficit and incompetence of the knee extensor mechanism, we believe the medial gastrocnemius rotational myoplasty provides an excellent reconstructive option to address both of these fundamental problems simultaneously


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 54 - 54
1 May 2019
Rosenberg A
Full Access

General Principles. All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion. Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex mesh can provide additional support. Acute Patella Tendon Rupture. End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture. These can be repaired end-to-end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture. Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag, non-operative treatment in extension. A loose component and/or > 20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions. While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate. In chronic disruptions with loss of the patella, allograft extensor mechanism reconstruction may be considered. Marlex mesh repair has also been shown to be effective in reconstruction of chronic patellar and quadriceps tendon defects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 366 - 366
1 Dec 2013
Kaneyama R Nagamine R Weijia C Shiratsuchi H
Full Access

Objective:. Accurate measurement of the extension and flexion gap is important in total knee arthroplasty (TKA). Particularly, the flexion gap may be influenced by several factors; therefore, tension of the posterior cruciate ligament (PCL), knee extensor mechanism, and the thigh weight may need to be considered while estimating the flexion gap. However, there is no comprehensive study on the flexion gap, including an assessment of the influence of gravity on the gap. The purpose of this study is to investigate the influence of PCL, knee extensor mechanism, and thigh weight on the flexion gap by using a fresh frozen cadaver. Methods:. A fresh frozen lower limb that included the pelvis was used for the assessments. The knee was resected by a measured resection technique and a femoral component was implanted to estimate the component gap. The knee was flexed by precisely 90 degrees using a computer navigation system. The flexion gap was measured in different situations: group A, PCL preserved and patella reduced; group B, PCL preserved and patella everted; group C, PCL resected and patella reduced; and group D, PCL resected and patella everted. In each group, the measurements were obtained under 3 different conditions: 1, knee flexed and the lower limb on the operation table under gravity, as is usually done in TKA; 2, hip and knee flexed 90 degrees to avoid the influence of gravity; and 3, knee set in the same position as in condition 1 and the thigh was held by hand to reduce the influence of the thigh weight. Results:. The flexion gap differed according to groups and conditions. Group B was larger than group A in most conditions and group D was larger than group C. The flexion gap in group D was the largest among the 4 groups. The extensor mechanism had influences to the flexion gap (Table 1). In groups A and B, the flexion gaps were similar under conditions 1, 2, and 3; however, in groups C and D, the flexion gaps in condition 1 were smaller than those in conditions 2 and 3. The thigh weight condition had influences to the flexion gap when the PCL was resected (Table 2). Conclusion:. This is the first systemic report about the influences of PCL, extensor mechanism, and thigh weight on flexion gap measurement in TKA. PCL, extensor mechanism, and thigh weight influence the flexion gap and should be considered during TKA surgery. Especially, careful consideration is necessary to estimate the flexion gap when the PCL is resected and the patella is everted because the flexion gap becomes much wider than other situations


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 132 - 132
1 Feb 2015
Lewallen D
Full Access

Complications involving the knee extensor mechanism occur in 1% to 12% of patients following total knee arthroplasty (TKA), and have negative effects on patient outcomes. While multiple reconstruction options have been described for complete disruption of the extensor mechanism, the results in patients with a prior TKA are inferior to those in patients without a TKA, and frequently have required the use of allograft tendon grafts which can attenuate and stretch over time. However, encouraging results have been reported by Browne and Hanssen in treatment of patellar tendon disruption with the use of a synthetic mesh (knitted monofilament polypropylene). In this technique, a synthetic graft is created by folding a 10 × 14 inch sheet of mesh and securing it with non-absorbable sutures. A burr is then used to create a trough in the anterior aspect of the tibia to accept the mesh graft. The graft is inserted into the trough and secured with cement. After the cement cures, a transfixion screw with a washer is placed. A portal is subsequently created in the soft tissues lateral patellar tendon remnants to allow delivery of the graft from deep to superficial. The patella and quadriceps tendon are mobilised, and the graft is secured with sutures to the lateral retinaculum, vastus lateralis, and quadriceps tendon. The vastus medialis is then mobilised and brought in a pants-over-vest manner over the mesh graft, and secured with additional sutures. Finally, the distal arthrotomy is closed tightly to completely cover the mesh graft with host tissue. In their series, Browne and Hanssen noted that 9 of 13 patients achieved an extensor lag of <10 degrees with preserved knee flexion and significant improvements in the mean Knee Society scores for pain and function. A similar modified method has been used at our institution for chronic quadriceps tendon disruptions as well. The reconstructions have shown less of a tendency to late attenuation, stretch and recurrent extensor lag beyond two years compared to our experience with tendon allograft reconstructions and remains our procedure of choice at our institution for the majority of these challenging problems


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 116 - 116
1 Jun 2018
Jacobs J
Full Access

General Principles: All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion: Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture: End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture: These can be repaired end-to-end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture: Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag, non-operative treatment in extension. A loose component and/or > 20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions: While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate. In chronic disruptions with loss of the patella, allograft extensor mechanism reconstruction may be considered. Marlex mesh repair has also been shown to be effective in reconstruction of chronic patellar and quadriceps tendon defects


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 54 - 54
1 Aug 2017
Rosenberg A
Full Access

General Principles - All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute Tibial Tuberosity Avulsion - Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilisation. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture - End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture - These can be repaired end to end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture - Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag. A loose component and/or >20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions - While standard repair techniques are possible, tissue retraction usually prevent a “tension-free” repair. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate while in any patellar tendon defect, mesh repair has been shown to be effective. In most chronic disruptions with loss of the patella allograft extensor mechanism reconstruction may be considered


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 96 - 96
1 Dec 2016
Rosenberg A
Full Access

General Principles. All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion. Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6–8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture. End to end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture. These can be repaired end to end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture. Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag. A loose component and/or >20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions. While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. In most chronic disruptions allograft extensor mechanism reconstruction is preferable. If the patella remains viable and has not retracted proximally, an Achilles tendon graft is appropriate while in any patellar tendon defect, mesh repair has been shown to be effective


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 66 - 66
1 Nov 2015
Rosenberg A
Full Access

General Principles: All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion: Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6–8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture: End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length if needed. Acute Quadriceps Tendon Rupture: These can be repaired end-to-end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture: Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20 degree lag. A loose component and/or > 20 degree extensor lag requires ORIF +/− component revision. Chronic Disruptions: While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. In most chronic disruptions allograft extensor mechanism reconstruction is preferable. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate while in any patellar tendon defect, mesh repair has been shown to be effective


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 103 - 103
1 Feb 2015
Rosenberg A
Full Access

General Principles. Repairs should be immobilised in full extension for 6–8 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Acute tibial tuberosity avulsion - Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilization. Augmentation with a semitendinosus graft can provide additional structural support. Acute Patella Tendon Rupture - End to end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length if needed. Acute Quadriceps Tendon Rupture - These can be repaired end to end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turn-down may be a useful adjunct. Patella Fracture - Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag. A loose component and/or >20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions - While standard repair techniques are possible, tissue retraction usually prevent a “tension-free” repair. In most chronic disruptions complete allograft extensor mechanism reconstruction is preferable. If the patella itself has not retracted proximally and remains intact other allograft soft tissues are a viable alternative. All grafts should be repaired tightly with the knee in full extension


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 65 - 65
1 Jul 2014
Rosenberg A
Full Access

General Principles. Repairs should be immobilised in full extension for 6–8 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Acute tibial tuberosity avulsion. Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6–8 weeks of immobilisation. Augmentation with a semitendinosus graft can provide additional structural support. Acute Patella Tendon Rupture. End to end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture. These can be repaired end to end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turn-down may be a useful adjunct. Patella Fracture. Treatment depends on the status of the patellar component and the loss of active extension if the component remains well fixed and the patient has less than a 20 degree lag. A loose component and/or >20 degree extensor lag requires ORIF +/− component revision. Chronic Disruptions. While standard repair techniques are possible, tissue retraction usually prevent a “tension-free” repair. In most chronic disruptions complete allograft extensor mechanism reconstruction is preferable. If the patella itself has not retracted proximally and remains intact, other allograft soft tissues are a viable alternative. All grafts should be repaired tightly with the knee in full extension


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 120 - 120
1 Apr 2017
Abdel M
Full Access

Complications involving the knee extensor mechanism occur in 1% to 12% of patients following total knee arthroplasty (TKA), and have negative effects on patient outcomes. While multiple reconstruction options have been described, the results in patients with a prior TKA are inferior to those in patients without a TKA. However, optimistic results have been reported by Browne and Hanssen with the use of a synthetic mesh (knitted monofilament polypropylene)3. In this technique, a synthetic graft is created by folding a 10 × 14 inch sheet of mesh and securing it with nonabsorbable sutures. A burr is then used to create a trough in the anterior aspect of the tibia to accept the mesh graft. The graft is inserted into the trough and secured with cement. After the cement cures, a transfixion screw with a washer is placed. A portal is subsequently created in the lateral soft tissues to allow delivery of the graft from deep to superficial. The patella and quadriceps tendon are mobilised, and the graft is secured with sutures to the lateral retinaculum, vastus lateralis, and quadriceps tendon. The vastus medialis is then mobilised in a pants-over-vest manner over the mesh graft, and secured with sutures. Finally, the distal arthrotomy is closed tightly to completely cover the mesh graft with host tissue. In their series, Browne and Hanssen noted that 9 of 13 patients achieved an extensor lag of > 10 degrees with preserved knee flexion and significant improvements in the mean Knee Society scores for pain and function


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 218 - 218
1 Dec 2013
Abe S Nochi H Kobayashi H Ruike T Ito H
Full Access

Introduction. Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. We have developed a balanced gap technique in posterior stabilized total knee arthroplasty using an original instrument. Patellar instability is associated with an increased the tibial tubercle and the center of the groove (TT-TG) distance > 20 mm, and TT-TG is regarded as one index of a factor influencing congruity. To assess the influence on a patellofemoral joint by a modified gap technique, the purpose of this study is to compare the TT-TG distance before surgery and after total knee arthroplasty. Material and Methods. We explored the 30 knees, 25 patients (4 male and 21 female), who underwent total knee arthroplasties (NexGen LPS-Flex, fixed surface, Zimmer; Warsaw, USA) for osteoarthritis or rheumatoid arthritis. All procedures were performed through a medial parapatellar approach and a balanced gap technique used a developed versatile tensor device. We compared the preoperative and postoperative CT at a knee flexion angle of 30 degrees. To assess the force vector of the extensor mechanism, TT-TG distance and the proximal-distal distance between the entrance of the tracheal groove and the tibial tubercle (ET-TT distance) were measured in CT. The relation of both distances (TT-TG index) that divided TT-TG in ET-TT was calculated, because the TT-TG distance was affected by the individual knee size. Three dimensional Q-angle (θ) was also calculated using TT-TG distance and ET-TT distance, sinθ = TT-TG distance/ET-TT distance. (Figure 1). Results. The mean TT-TG distance of the pre-operation and post-operation was 14.6 ± 4.9 mm and 12.4 ± 3.9 mm, respectively. The mean ET-TT distance of the pre-operation and post-operation was 68.5 ± 7.3 mm and 71.8 ± 7.5 mm, respectively. The mean TT-TG index of the pre-operation and post-operation was 0.22 ± 0.07 and 0.17 ± 0.05, respectively. The mean θ was 12.1 ± 3.96 degrees and 9.84 ± 2.98 degrees, respectively. There were statistically differences of between pre-operation and post-operation. Discussion. TT-TG distance, TT-TG index and the three dimensional Q angle decreased after total knee arthroplasty using the modified gap technique. These results indicated that patellofemoral joint was realigned and stabilized, and the force vector of the extensor mechanism was decreased by the modified gap technique


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 46 - 46
1 Jul 2014
Abdel M
Full Access

Complications involving the knee extensor mechanism occur in 1% to 12% of patients following total knee arthroplasty (TKA), and have negative effects on patient outcomes. While multiple reconstruction options have been described, the results in patients with a prior TKA are inferior to those in patients without a TKA. However, optimistic results have been reported by Browne and Hanssen with the use of a synthetic mesh (knitted monofilament polypropylene). In this technique, a synthetic graft is created by folding a 10 × 14 inch sheet of mesh and securing it with nonabsorbable sutures. A burr is then used to create a trough in the anterior aspect of the tibia to accept the mesh graft. The graft is inserted into the trough and secured with cement. After the cement cures, a transfixion screw with a washer is placed. A portal is subsequently created in the lateral soft tissues to allow delivery of the graft from deep to superficial. The patella and quadriceps tendon are mobilised, and the graft is secured with sutures to the lateral retinaculum, vastus lateralis, and quadriceps tendon. The vastus medialis is then mobilised in a pants-over-vest manner over the mesh graft, and secured with sutures. Finally, the distal arthrotomy is closed tightly to completely cover the mesh graft with host tissue. In their series, Browne and Hanssen noted that 9 of 13 patients achieved an extensor lag of <10 degrees with preserved knee flexion and significant improvements in the mean Knee Society scores for pain and function


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 11 - 11
1 Jul 2012
Sarraf K Atherton D Sadri A Jayaweera A Gibbons C Jones I
Full Access

Full-thickness burns around the knee can involve the extensor mechanism. The gastrocnemius flap is well described for soft tissue reconstruction around the knee. We describe a method where a Whichita Fusion Nail¯ knee arthrodesis, combined with a medial gastrocnemius muscle flap was used to salvage the knee and preserve the lower leg following a full-thickness contact burn. The gastrocnemius flap for wound coverage of an open knee joint was originally described in 1970 and remains the workhorse for soft tissue knee reconstruction. There are a number of local alternatives including the vastus lateralis, medialis and sartorius flap; and perforator flaps such as the medial sural artery perforator island flap and islanded posterior calf perforator flap, however many of these are unsuitable for larger defects. Full-thickness burns around the knee can put the extensor mechanism at risk and subsequent rupture is a possible consequence. The gastrocnemius flap has been used to cover a medial knee defect with exposed joint cavity following a burn and also been used in post burn contracture release around the knee. The primary indication for Wichita fusion nail is a failed total knee replacement. It allows intramedullary stabilization with compression at the arthrodesis site to stimulate bone union. With fusion rates reported up to 100% and low complication rates as compared to other methods of fusion, the technique has a useful role in limb salvage type procedures. While use of the gastrocnemius flap in knee burns has been described before we believe this is the first time that this combination of techniques, namely knee arthrodesis with soft tissue reconstruction using a gastrocnemius flap, has been reported. Combining these procedures with a multidisciplinary approach provides a useful alternative leading to limb salvage and avoiding the need for an above knee amputation when extensor reconstruction is not possible