Background. Fractures of the femoral neck occurring outside the capsule of the hip joint are assumed to have an intact blood supply and hence their conventional management is by fixation rather than arthroplasty. The dynamic hip screw and its variants have been used over many years to fix such fractures but have inherent vulnerabilities; they require an intact lateral femoral cortex, confer a relatively long moment arm to the redistribution of body weight and may cause a stress riser due to the plate with which they are fixed to the femur. Intramedullary devices for fixation of proximal femoral fractures have a shorter moment arm, can be distally locked with reduced perforation of the femoral cortex and are believed to be inherently more stable. For these reasons, a number of surgeons believe them to be superior to the DHS for all
Increasing incidence of osteoporosis, obesity and an aging population have led to an increase in low energy hip fractures in the elderly. Perceived lower blood loss and lower surgical time, media coverage of minimal invasive surgery and patient expectations unsurprisingly have led to a trend towards intramedullary devices for fixation of
Abstract. Introduction. Several studies have shown that patients over 65 years have a higher mortality with covid. Combine with inherently increased morbidity and mortality in neck of femur (NoFF) fractures, it is logical to think that this subset would be most at risk. Aims. Investigate whether there is actual increase in direct mortality from Covid infection in NoFF patients, also investigate other contributing factors to mortality with covid positivity and compare the findings with current available literature. Methods. 1-year cross sectional, retrospective study from 1st March 2020 at two DGHs, one in Wales and one in England. Surgically treated NoFF patients with isolated intra/
There is no optimal therapy to stop or cure chondral degeneration in osteoarthritis (OA). Beside cartilage, subchondral bone is involved. The often sclerotic bone is mechanically less solid which in turn influences negatively chondral quality. Microfracturing as therapeutic technique aims to enhance bone quality but is applied only in smaller cartilage lesions. The osteoproliferative properties of Magnesium (Mg) have been shown repeatedly. 1-3. The present study examined the influence of micro-scaled Mg cylinders compared to sole drilling in an OA model. Ten New Zealand White rabbits underwent anterior crucial ligament transection. During 12 weeks after surgery, the animals developed OA as previously described. 4. In a second surgery, half of the animals received 20 drill holes (ø 0.5mm) and the other half received 20 drill holes, which were additionally filled with one Mg cylinder each.
Introduction and Objective. When using radiation intraoperatively, a surgeon should aim to maintain the dose as low as reasonably achievable to obtain the diagnostic or therapeutic goal. The UK Health Protection Agency reported mean radiation dose-area-product (DAP) of 4 Gy cm2 for hip procedures. We aimed to investigate factors associated with increased radiation exposure in fixation of proximal femur fractures. Materials and Methods. We assessed 369 neck of femur fractures between April 2019 and April 2020 in one district general hospital. Fractures were classified as
Background. Hip fractures cause significant morbidity and mortality, affecting 70,000 people in the UK each year. The dynamic hip screw (DHS) is used for the osteosynthesis of
Background. Hip fractures affect 1.6 million people globally per annum, associated with significant morbidity and mortality. A large proportion are
Frail patients with neck of femur fracture, amongst other medical problems, are frequently fast-tracked to orthopaedic wards to meet government A&E waiting time targets. This is a second cycle of audit since 2008 examining the safety of fast-tracking following individual critical incidents. Data was collected prospectively between March and June 2011 by the first on-call orthopaedic doctor. 56 patients (12 male), average age 81.2y (50–97) were fast tracked. 52 were correctly referred as intra/
In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two. Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.
Anatomical descriptions of the lateral retinaculum have been published, but the attachments, name or even existence of its tissue bands and layers are ill-defined. We have examined 35 specimens of the knee. The deep fascia is the most superficial layer and the joint capsule is the deepest. The intermediate layer is the most substantial and consists of derivatives of the iliotibial band and the quadriceps aponeurosis. The longitudinal fibres of the iliotibial band merge with those of the quadriceps aponeurosis adjacent to the patella. These longitudinal fibres are reinforced by superficial arciform fibres and on the deep aspect by transverse fibres of the iliotibial band. The latter are dense and provide attachment of the iliotibial band to the patella and the tendon of vastus lateralis obliquus. Our study identifies two important new findings which are a constant connection of the deep fascia to the quadriceps tendon superior and lateral to the patella, and, a connection of the deeper transverse fibres to the tendon of vastus lateralis obliquus.
There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°.