Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 43 - 43
1 Dec 2020
Sas A Sermon A van Lenthe GH
Full Access

Prophylactic treatment is advised for metastatic bone disease patients with a high risk of fracture. Clinicians face the task of identifying these patients with high fracture risk and determining the optimal surgical treatment method. Subject-specific finite element (FE) models can aid in this decision process by predicting the mechanical effect of surgical treatment. In this study, we specifically evaluated the potential of FE models to simulate femoroplasty, as uncertainty remains whether this prophylactic procedure provides sufficient mechanical strengthening to the weight-bearing femur. In eight pairs of human cadaveric femurs artificial metastatic lesions were created. In each pair, an identical defect was milled in the left and right femur. Four pairs received a spherical lesion in the neck and the other four an ellipsoidal lesion in the intertrochanteric region, each at the medial, superior/lateral, anterior and posterior side, respectively. One femur of each pair was augmented with polymethylmethacrylate (5–10 ml), while the contralateral femur was left untreated. CT scans were made at three different time points: from the unaffected intact femurs, the defect femurs with lesion and the augmented femurs. Bone strength was measured by mechanical testing until failure in eight defect and eight augmented femurs. Nonlinear CT-based FE models were developed and validated against the experimentally measured bone strength. Subsequently, the validated FE model was applied to the available CT scans for the three different cases: intact (16 scans), defect (16) and augmented (8). The FE predicted strength was compared for the three different cases. The FE models predicted the experimental bone strength with a strong correspondence, both for the defect (R. 2. = 0.97, RMSE= 0.75 kN) and the augmented femurs (R. 2. = 0.90, RMSE = 0.98 kN). Although all lesions had a “moderate” to “high” risk for fracture according to the Mirels’ scoring system (score 7 or 8), three defect femurs did not fracture through the lesion (intertrochanteric anterior, lateral and posterior), indicating that these lesions did not act as a critical weak spot. In accordance with the experimental findings, the FE models indicated almost no reduction in strength between the intact and defect state for these femurs (0.02 ± 0.1%). For the remaining “critical” lesions, bone strength was reduced with 15.7% (± 14.9%) on average. The largest reduction was observed for lesions on the medial side (up to 43.1%). For the femurs with critical lesions, augmentation increased bone strength with 29.5% (± 29.7%) as compared to the defect cases, reaching strength values that were 2.5% (± 3.7%) higher than the intact bone strength. Our findings demonstrate that FE models can accurately predict the experimental bone strength before and after augmentation, thereby enabling to quantify the mechanical benefit of femoroplasty. This way FE models could aid in identifying suitable patients for whom femoroplasty provides sufficient increase in strength. For all lesions evaluated in this study, femoroplasty effectively restored the initial bone strength. Yet, additional studies on larger datasets with a wide variation of lesion types are required to confirm these results


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 216 - 216
1 May 2011
Parratte S Amphoux T Kolta S Gagey O Skalli W Bouler J Argenson J
Full Access

Introduction: The incidence of contralateral, second hip fractures after a first hip fracture is as high as 20% in the elderly. Femoroplasty using an injectable and resorbable bi-phosphonate loaded bone substitute to prevent controlateral hip fracture may represent a promising preventive therapy. We aimed to evaluate the biomechanical consequences of the femoroplasty using this bone substitute. Materials and Methods: Twelve paired human cadaveric femora from donors with a mean age of 86 years (7 women and 6 men) were randomly assigned for femoroplasty and biomechanically tested for fracture load against their native contralateral control. Anterior–posterior and lateral radiographs and DXAscan’s were made before injection. Femoroplasty were performed under fluoroscopic guidance with an injectable and resorbable bi-phosphonate loaded bone substitute. All femurs were fractured by simulating a fall on the greater trochanter by an independent observer. Results: Mean T-score of the tested femur were −3. Bone density was comparable for each pair of femur. All the observed fractures were Kyle II throchanteric fractures. Mean fracture load was 2786 Newton in the femoroplasty group (group F) versus 2116 Newton in the control group (group C) (p< 0.001). Fracture loads were always higher in the group F: mean 41.6% (mini: 1.2%/maxi:102.1%). Effect of femoroplasty was significantly superior for women and also correlated to initial bone density (p< 0.0001). Discussion:According to our results, femoroplasty with an injectable and resorbable bi-phosphonate loaded bone substitute can provide significant biomechanical reinforcement of the proximal femur to prevent controlateral fracture


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 35 - 35
1 Nov 2018
Ansón MÁP
Full Access

Femoroplasty is the process of injecting cement (cement augmentation) into the proximal femur to prevent osteoporotic hip fractures. Femoroplasty increases the strength and energy to failure of the femur and can be performed in a minimally-invasively manner with lower hospitalization costs and reduced recovery. Our hypothesis was that efficient cement augmentation strategies can be identified via computational optimization. Therefore, using patient-specific planning we can minimize cement volume while increasing bone strength and reducing the risk of fracture. We proposed an in-silico methodology that was validated with in vitro experiments. A discrete particle model for cement infiltration was used to determine the optimum volume and filling pattern of the cement such that the best outcome was achieved. Several artificial bones were scanned before and after cement augmentation to applied previous in silico methodology. Then those femurs were mechanically tested (non-augmented and augmented). Therefore, in silico methodology was validated. Cement augmentation significantly increased the yield load. Predicted yield loads correlated well with the experiments. Results suggest that patient-specific planning of femoroplasty reduces the risk of hip fracture while minimizing the amount of cement required


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 63 - 63
1 Dec 2022
Hoffer A Kingwell D Leith J McConkey M Ayeni OR Lodhia P
Full Access

Over half of postpartum women experience pelvic ring or hip pain, with multiple anatomic locations involved. The sacroiliac joints, pubic symphysis, lumbar spine and pelvic girdle are all well documented pain generators. However, despite the prevalence of postpartum hip pain, there is a paucity of literature regarding underlying soft tissue intra-articular etiologies. The purpose of this systematic review is to document and assess the available evidence regarding underlying intra-articular soft tissue etiologies of peri- and postpartum hip pain. Three online databases (Embase, PubMed and Ovid [MEDLINE]) were searched from database inception until April 11, 2021. The inclusion criteria were English language studies, human studies, and those regarding symptomatic labral pathology in the peri- or postpartum period. Exclusion criteria were animal studies, commentaries, book chapters, review articles and technical studies. All titles, relevant abstracts and full-text articles were screened by two reviewers independently. Descriptive characteristics including the study design, sample size, sex ratio, mean age, clinical and radiographic findings, pathology, subsequent management and outcomes were documented. The methodological quality of the included studies was assessed using the Methodological Index for Non-Randomized Studies (MINORS) instrument. The initial search identified 2472 studies. A systemic screening and assessment of eligibility identified 5 articles that satisfied the inclusion criteria. Twenty-two females were included. Twenty patients presented with labral pathology that necessitated hip arthroscopy with labral debridement or repair with or without acetabuloplasty and/or femoroplasty. One patient presented with an incidental labral tear in the context of osteitis condensans illi. One patient presented with post-traumatic osteoarthritis necessitating a hip replacement. The mean MINORS score of these 5 non-comparative studies was 2.8 (range 0-7) demonstrating a very low quality of evidence. The contribution of intra-articular soft tissue injury is a documented, albeit sparse, etiology contributing to peri- and postpartum hip pain. Further research to better delineate the prevalence, mechanism of injury, natural history and management options for women suffering from these pathologies at an already challenging time is necessary to advance the care of these patients


Bone & Joint 360
Vol. 11, Issue 2 | Pages 21 - 22
1 Apr 2022


Bone & Joint 360
Vol. 7, Issue 6 | Pages 18 - 21
1 Dec 2018


Bone & Joint Research
Vol. 7, Issue 5 | Pages 336 - 342
1 May 2018
Hotham WE Malviya A

This systematic review examines the current literature regarding surgical techniques for restoring articular cartilage in the hip, from the older microfracture techniques involving perforation to the subchondral bone, to adaptations of this technique using nanofractures and scaffolds. This review discusses the autologous and allograft transfer systems and the autologous matrix-induced chondrogenesis (AMIC) technique, as well as a summary of the previously discussed techniques, which could become common practice for restoring articular cartilage, thus reducing the need for total hip arthroplasty. Using the British Medical Journal Grading of Recommendations, Assessment, Development and Evaluation (BMJ GRADE) system and Grade system. Comparison of the studies discussed shows that microfracture has the greatest quantity and quality of research, whereas the newer AMIC technique requires more research, but shows promise.

Cite this article: W. E. Hotham, A. Malviya. A systematic review of surgical methods to restore articular cartilage in the hip. Bone Joint Res 2018;7:336–342. DOI: 10.1302/2046-3758.75.BJR-2017-0331.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 294 - 303
1 Mar 2009
Lindner T Kanakaris NK Marx B Cockbain A Kontakis G Giannoudis PV

Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised.

Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.