Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 26 - 26
1 Jan 2019
Choudhury A Auvient E Iranpour F Lambkin R Wiik A Hing C Cobb J
Full Access

Patellofemoral osteoarthritis (PFOA) affects 32% men and 36% women over the age of 60years and is associated with anterior knee pain, stiffness, and poor mobility. Patellofemoral arthroplasty (PFA) is a bone-sparing treatment for isolated PFOA. This study set out to investigate the relationship between patient-related outcome measures (PROMs) and measurements obtained from gait analysis before and after PFA. There are currently no studies relating to gait analysis and PFA available in the literature

A prospective cohort study was conducted of ten patients known to have isolated PFOA who had undergone PFA compared to a gender and age matched control group. The patients were also asked to complete questionnaires (Oxford knee score (OKS), EQ-5D-5L) before surgery and one year after surgery. Gait analysis was done on an instrumented treadmill comparing Ground reaction force parameters between the control and pre and post-operative PFA patients

The average age 60 (49–69) years with a female to male ratio of 9:1. Patient and healthy subjects were matched for age and gender, with no significant difference in BMI. Post-op PFA improvement in gait seen in ground reaction force at 6.5km/h. Base support difference was statistically significant both on the flat P=0.0001 and uphill P=0.429 (5% inclination) and P=0.0062 (10% inclination). PROMS response rate was 70%(7/10) pre-operative and 60%(6/10) post-operative. EQ-5D-5L scores reflected patient health state was better post-operatively.

This study found that gait analysis provides an objective measure of functional gait and reflected by significant quality-of-life improvement of patients post PFA. Literature lacks studies relating to gait-analysis and PFA. Valuable information provided by this study highlights that PFA has a beneficial outcome reflected by PROMs and improvement in vertical ground reaction force and gait

Further research is needed to assess how care-providers may use gait-analysis as part of patient care plans for PFOA patients.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 112 - 112
14 Nov 2024
Tsagkaris C Hamberg ME Villefort C Dreher T Krautwurst BK
Full Access

Introduction. Understanding the implications of decreased femoral torsion on gait and running in children and adolescents might help orthopaedic surgeons to optimize treatment decisions. To date, there is limited evidence regarding the kinematic gait deviations between children with decreased femoral torsion and typically developing children as well as regarding the implications of the same on the adaptation of walking to running. Method. A three dimensional gait analysis study was undertaken to compare gait deviations during running and walking among patients with decreased femoral torsion (n=15) and typically developing children (n=11). Linear mixed models were utilized to establish comparisons within and between the two groups and investigate the relation between clinical examination, spatial parameters and the difference in hip rotation between running and walking. Result. Patients exhibited increased external hip rotation during walking in comparison to controls accompanied by higher peaks for the same as well as for, knee valgus and external foot progression angle. A similar kinematic gait pattern was observed during running with significant differences noted in peak knee valgus. In terms of variations from running to walking, patients internally rotated their initially external rotated hip by 4°, whereas controls maintained the same internal hip rotation. Patients and controls displayed comparable kinematic gait deviations during running compared to walking. The passive hip range of motion, torsions and velocity did not notably influence the variation between mean hip rotation from running to walking. Conclusion. This study underlines the potential of 3D gait kinematics to elucidate the functional implications of decreased FT and hence may contribute to clinical decision making


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 5 - 5
1 Jan 2017
Brevadt M Wiik A Aqil A Johal H Van Der Straeten C Cobb J
Full Access

Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established hip resurfacing and long stem total hip replacement (THR) implants. 110 subjects were tested on an instrumented treadmill (Kistler Gaitway, Amherst, NY), 4 groups (short-stem THR, long-stem THR, hip resurfacing and healthy controls) of 28, 29, 27, and 26 respectively. The new short femoral stem patients (Furlong Evolution, JRI) were taken from the ongoing Evolution Hip trial that have been tested on the treadmill with minimum 12months postop. The long stem total hip replacements and hip resurfacing groups were identified from out 800 patient gait database. They were only chosen if they were 12 months postop and had no other joint disease or medical comorbidities which would affect gait performance. All subjects were tested through their entire range of gait speeds and incline after having a 5 minute habituation period. Speed intervals were at 0.5kms increments until maximum walking speed achieved and inclines at 4kms for 5, 10, 15%. At all incremental intervals of speed, the vertical component of the ground reaction forces, center of pressure and temporal measurements were collected for both limbs with a sampling frequency of 100Hz. Body weight scaling was applied to correct for mass differences and a symmetry index to compare the implanted hip to the contralateral normal hip. All variables for each subject group were compared to each other using an analysis of variance (ANOVA) with Tukey post hoc test with significance set at α=0.05. The four experimental groups were reasonably matched for demographics and the implant groups for PROMs. Hip resurfacing had a clear top walking speed advantage, but when assessing the symmetry index on all speeds and incline, all groups were not significantly different. Push-off and step length was statistically less favourable for the short/long THR group (p=0.005–0.05) depending on speed/incline. The primary aim of this study was determine if implant design affected gait symmetry and performance. Interestingly, irrespective of implant design, symmetry with regards to weight acceptance, impulse, push-off and step length was returned to normal when comparing to healthy controls. However individual implant performance on the flat and incline, showed inferior (p<0.05) push-off force and step length in the short stem and long stem THR groups when compared to controls. Age and gender may have played a part for the short stem group. It appears that the early gait outcomes for the short stem device are promising. Assessment at the 3 year mark should be conclusive


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 170 - 170
1 Jul 2014
Crisan D Stoia D Prejbeanu R Toth-Trascau M Vermesan D
Full Access

Summary Statement. Objectifying postoperative recovery of patients with comminuted tibial plateau fractures treated with a unilateral plate trough the use of a gait analysis system. Introduction. Gait analysis has been a proved method for assessing postoperative results in patients with different orthopedic afflictions of the lower limb such as hallux valgus, ankle instabilities, knee osteoarthritis and arthroplasties but it has rarely been used for postoperative assessment of proximal tibial fractures. The more traditional means of quantifying postoperative articular step-off and limb axis deviations such as conventional X Rays and CT scanning and the clinician and patient completed scores that subjectively assess the outcome are complemented by the analysis of gait patterns set to objectify the most important patient related factor - the gait. As controversy exists in literature regarding the optimal treatment for severe tibial plateau fractures we proposed a gait study to evaluate locked angle unilateral plate osteosynthesis. Patient & Method: A computerised motion analysis system and a sensor platform were used to gather gait data from 15 patients with unilateral tibial plateau fractures graded Shatzker V and VI treated with a angular stable locked lateral plate osteosynthesis. Gait analysis was performed postoperatively based on patient availability and as soon as ambulation was possible and permitted without auxiliary support (crutches) at 4 (mean of 4,6), 6 (mean of 6,2) and 12 (mean of 11,7) months respectively, at a naturally comfortable walking. All patients were evaluated using classic anteroposterior and lateral knee radiography and were asked to fill the KOOS score questionnaire at the time of the gait analysis session. Results. The spatial-temporal and angular parameters revealed the expected postoperative decrease in ROM in both flexion and extension of the knee. Step and stance time objectively decreased between measuring session with an increase in single support of 3,7% mean value. A constant increase in walking speed was noted from a mean of 42 cm/sec (cadence of 31 st/min) at 4 months to a speed of 90 cm/sec (mean of 49 st/min cadence). We also determined a asymmetrical and wider walking base, increased area of support during single leg standing, decreased stance and increased swing phases for the injured knee compared to contralateral. Discussion. All patients in the study were subjectively satisfied with the results of the treatment, however we were able to detect quantifiable differences of gait parameters such between the injured and the contralateral knee such as step, stance and swing time and in knee flexion and adduction, combined with a modified, wider walking base. Ground reaction forces were strongly related to score improvement and thus directly reflected the healing at the fracture site


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 14 - 14
1 Apr 2018
Van Der Straeten C Abdulhussein D Brevadt M Cobb J
Full Access

Background. Hip resurfacing arthroplasty (HRA) and total hip arthroplasty (THA) are treatments of end-stage hip disease. Gait analysis studies comparing HRA and THA have demonstrated HRA results in a more normal gait than THA. The reasons may include the larger, more anatomic head diameter, the preservation of the femoral neck with restoration of the anatomical hip centre position and normal proprioception. This study investigated (1)whether femoral head size diameter affects gait; (2)whether gait still differs between THA and HRA patients even with comparable head diameters. Methods. We analysed the gait of 33 controls and 50 patients with unilateral hip replacement. Follow-up ranged from 9–68 months. In 27 hips a small femoral head size was used (≤ 36mm); in 23 hips a large head size (>36mm). The small size group consisted of 11 long femoral stem THA and 16 short-stem THA; the large group of 5 long-stem, 8 short-stem THA and 10 HRA patients. There were 14 females/19 males in the control group; 22 females/5 males in the small size group; 13 females/10 males in the large size group. Results. (1) We found a significant difference in step-length between small head sizes and controls (p<0.01) at speeds ranging from 4.0 to 5.5 km/h but no difference between the larger head size and the controls. There was no significant difference in maximum speed, weight acceptance, push-off, mid-stance, impulse and cadence between the groups. (2)Analysis between THA and HRA in the large head size group revealed a significant difference in maximum speed (p=0.021) between long-stem THA (6.338 km/h± 1.542) and HRA (7.756km/h± 0.7604) patients. At 5.5 km/h there was a significantly better weight acceptance (p=0.009) and mid-stance (p=0.041) of HRA compared to short-stems. Impulse was significantly higher for HRA compared to long-stem THA (p<0.05) at all speeds ranging 4 to 5.5 km/h. (3)Males (7.1972 km/h ± .9700) had significantly higher maximum speeds compared to females (6.6524km/h± 1.019) (p=0.017) and lower gait impulse (p<0.01) at speeds ranging from 4 to 5.5km/h. (4)There was no significant difference in Oxford Hip Score (OHS) and EQ-5D of patients in the small compared to large head size group. Conclusions. Gait analysis demonstrated a significant difference in step length between THA patients with head size ≤ 36mm and normal controls. There was no difference in step length between normal controls and THA patients with larger head sizes. Compared to larger head size THA, HRA still revealed higher maximum speeds and better weight acceptance. Males had significantly higher maximum speeds compared to females (controls and hip replacement patients). We could not demonstrate a correlation between better gait and Oxford scores or EQ-5D scores but these are known to have a ceiling effect. In a former study, better gait parameters such as longer step length and higher maximum speed have been associated with higher patient satisfaction