Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_5 | Pages 18 - 18
1 Mar 2014
Al-hadithy N Furness N Patel R Crockett M Anduvan A Jobbaggy A Woods D
Full Access

Cementless surface replacement arthroplasty (CSRA) is an established treatment for glenohumeral osteoarthritis. Few studies however, evaluate its role in cuff tear arthopathy. The purpose of this study is to compare the outcomes of CSRA for both glenohumeral osteoarthritis and cuff tear arthopathy. 42 CSRA with the Mark IV Copeland prosthesis were performed for glenohumeral osteoarthritis (n=21) or cuff tear arthopathy (n=21). Patients were assessed with Oxford and Constant scores, patient satisfaction, range of motion and radiologically with plain radiographs. Mean follow-up and age was 5.2 years and 74 years in both groups. Functional outcomes were significantly higher in OA compared with CTA with OSS improving from 18 to 37.5 and 15 to 26 in both groups respectively. Forward flexion improved from 60° to 126° and 42° to 74° in both groups. Three patients in the CTA group had a deficient subscapularis tendon, two of whom dislocated anteriorly. Humeral head resurfacing arthroplasty is a viable treatment option for glenohumeral osteoarthritis. In patients with CTA, functional gains are limited. We suggest CSRA should be considered in low demand patients where pain is the primary problem. Caution should be taken in patients with a deficient subscapularis due to the high risk of dislocation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 12 - 12
1 May 2016
Lombardo D Prey B Khan J Sabesan V
Full Access

Background. A challenge to obtaining proper glenoid placement in total shoulder arthroplasty is eccentric posterior bone loss and associated glenoid retroversion. This bone loss can lead to poor stability and perforation of the glenoid during arthroplasty. The purpose of this study was to evaluate the three dimensional morphology of the glenoid with associated bone loss for a spectrum of osteoarthritis patients using 3-D computed tomography imaging and simulation software. Methods. This study included 29 patients with advanced glenohumeral osteoarthritis treated with shoulder arthroplasty. Three-dimensional (3D) reconstruction of preoperative CT images was performed using image analysis software. Glenoid bone loss was measured at ten, vertically equidistant axial planes along the glenoid surface at four distinct anterior-posterior points on each plane for a total of 40 measurements per glenoid. The glenoid images were also fitted with a modeled pegged glenoid implant to predict glenoid perforation. Results. The average bone loss was greatest posteriorly in the AP plane at the central axis of the glenoid in the SI plane. Walch A2 and B1 shoulders had bone loss more centrally located, while Walch B2 shoulders displayed more posterior and inferior bone loss. There was a significant difference in the overall average bone loss for patients with no predicted peg perforation compared to patients predicted to have peg perforation (p=0.37). Peg perforation was most common in Walch B2 shoulders, in the posterior direction, and involved the central and posterior-inferior peg. Discussion. These data demonstrate a clear, anatomical pattern of glenoid bone loss for different classes of glenohumeral arthritis. These findings can be used to develop various models of glenoid bone loss to guide surgeons, predict failures, and help develop better glenoid implant


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 3 - 3
1 Feb 2020
Hartwell M Sweeney RHP Marra G Saltzman M
Full Access

Background

Rotator cuff atrophy evaluated with computed tomography scans has been associated with asymmetric glenoid wear and humeral head subluxation in glenohumeral arthritis. Magnetic resonance imaging has increased sensitivity for identifying rotator cuff pathology and has not been used to investigate this relationship. The purpose of this study was to use MRI to assess the association of rotator cuff muscle atrophy and glenoid morphology in primary glenohumeral arthritis.

Methods

132 shoulders from 129 patients with primary GHOA were retrospectively reviewed and basic demographic information was collected. All patients had MRIs that included appropriate orthogonal imaging to assess glenoid morphology and rotator cuff pathology and were reviewed by two senior surgeons. All patients had intact rotator cuff tendons. Glenoid morphology was assigned using the modified-Walch classification system (types A1, A2, B1, B2, B3, C, and D) and rotator cuff fatty infiltration was assigned using Goutallier scores.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 515 - 515
1 Dec 2013
Sabesan V Callanan M Sharma V
Full Access

Background

Total shoulder arthroplasty is technically demanding in regards to implantation of the glenoid component, especially in the setting of increased glenoid deformity and posterior glenoid wear. Augmented glenoid implants are an important and innovative option; however, there is little evidence accessible to surgeons to guide in the selection of the appropriate size augmented glenoid.

Methods

Solid computer models of a commercially available augmented glenoid components (+3, +5, +7) contained within the software allowed for placement of the best fit glenoid component within the 3D reconstruct of each patient's scapula. Peg perforation, amount of bone reamed and amount of medialization were recorded for each augment size.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 2 - 2
7 Nov 2023
du Plessis JG Koch O le Roux T O'Connor M
Full Access

In reverse shoulder arthroplasty (RSA), a high complication rate is noted in the international literature (24.7%), and limited local literature is available. The complications in our developing health system, with high HIV, tuberculosis and metabolic syndrome prevalence may be different from that in developed health systems where the literature largely emanates from. The aim of this study is to describe the complications and complication rate following RSA in a South African cohort. An analytical, cross-sectional study was done where all patients’ who received RSA over an 11 year period at a tertiary hospital were evaluated. One-hundred-and-twenty-six primary RSA patients met the inclusion criteria and a detailed retrospective evaluation of their demographics, clinical variables and complication associated with their shoulder arthroplasty were assessed. All fracture, revision and tumour resection arthroplasties were excluded, and a minimum of 6 months follow up was required. A primary RSA complication rate of 19.0% (24/126) was noted, with the most complications occurring after 90 days at 54.2% (13/24). Instability was the predominant delayed complication at 61.5% (8/13) and sepsis being the most common in the early days at 45.5% (5/11). Haematoma formation, hardware failure and axillary nerve injury were also noted at 4.2% each (1/24). Keeping in mind the immense difference in socioeconomical status and patient demographics in a third world country the RSA complication rate in this study correlates with the known international consensus. This also proves that RSA is still a suitable option for rotator cuff arthropathy and glenohumeral osteoarthritis even in an economically constrained environment like South Africa


Reverse Total shoulder arthroplasty (RTSA) was initially introduced to treat rotator cuff arthropathy. With proven successful long-term outcomes, it has gained a noteworthy surge in popularity with its indications consequently being extended to treating various traumatic glenohumeral diseases. Several countries holding national registries remain a guide to the use the prosthesis, however a notable lack of epidemiological data still exists. More so in South Africa where the spectrum of joint disease related to communicable diseases such as HIV and tuberculosis may influence indications and patient demographics. By analysing the epidemiology of patients who underwent RTSA at our institution, we aimed to outline the local disease spectrum, the patients afflicted and indications for surgery. A retrospective review of all patients operated within the sports unit between 1 January 2019 and 31 December 2022 was conducted. An analysis of the epidemiological data pertaining to patient demographics, diagnosis, indications for surgery and complications were recorded. Included in the review were 58 patients who underwent primary RTSA over the 4-year period. There were 41 females and 17 male patients, age <55 years (n= 14) >55 years (n=44). The indications included 23 rotator cuff arthropathy (40%), 12 primary glenohumeral osteoarthritis (OA) (20%), 10 avascular necrosis (AVN) humeral head (17%), 7 inflammatory OA (12%), 4 chronic shoulder dislocation (7%) and 2 sequalae of proximal humerus fractures (4%). The study revealed RTSA being performed in patients older than 55 years of age, the main pathologies included rotator cuff arthropathy and primary OA, however AVN and shoulder dislocations secondary to trauma contributed significantly to the total tally of surgeries undertaken. This highlights the disease burden of developing countries contributing to patients presenting for RTSA


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 1 - 1
1 Jul 2020
Paul R Maldonado-Rodriguez N Docter S Leroux T Khan M Veillette C Romeo A
Full Access

Reverse total shoulder arthroplasty (RSA) with glenoid bone grafting has become a common option for the management of significant glenoid bone loss and deformity associated with glenohumeral osteoarthritis. Despite the increasing utilization of this technique, our understanding of the rates of bone graft union, complications and outcomes are limited. The objectives of this systematic review are to determine 1) the overall rate of bone graft union, 2) the rate of union stratified by graft type and technique, 3) the reoperation and complication rates, and 4) functional outcomes, including range of motion (ROM) and functional outcome scores following RSA with glenoid bone grafting. A comprehensive search of MEDLINE, Embase, and CINAHL databases was completed for studies reporting outcomes following RSA with glenoid bone grafting. Inclusion criteria included clinical studies with greater than 10 patients, and minimum follow up of one year. Studies were screened independently by two reviewers and quality assessment was performed using the MINORs criteria. Pooled and frequency-weighted means and standard deviations were calculated where applicable. Overall, 15 studies were included, including nine retrospective case series (level IV), four retrospective cohort studies (level III), one prospective cohort study (level II) and one randomized control trial (level I). The entire cohort consisted of 555 patients with a mean age of 71.9±2.1 years and 70 percent female. The mean follow-up was 33.8±9.4 months. Across all procedures, 84.9% (N=471) were primary arthroplasties, and 15.1% (N=84) were revisions. The overall graft union rate was 89.2%, but was higher at 96.1% among studies that used autograft bone (9 studies, N=308). When stratified by technique, bone graft for the purposes of lateralization resulted in a 100% union rate (4 studies, N=139), while eccentric bone grafts used in asymmetric bone loss resulted in a lower union rate of 84.9% (10 studies, N=345). The overall revision rate was 6.5%, and was lowest following primary cases at 1.8% (11 studies, N=393). The pooled mean scapular notching rate was 20.1% (12 studies, N=497). Excluding notching, the pooled mean complication rate was 21.5% for all cases and 13% for primary cases (11 studies, N=393). When reported, there was significant improvement in post-operative ROM in all planes. There was also improvement in functional outcome scores, whereby the frequency-weighted mean Constant score increased from 25.9 to 67.2 (8 studies, N=319), ASES score increased from 34.7 to 75.2 (4 studies, N=142), and SST score increased from 2.1 to 7.6 (5 studies, N=196) at final follow up. This review demonstrates that glenoid bone grafting with RSA results in good mid-term clinical and radiographic outcomes. Union rate appears to depend highly on graft type and technique, whereby the highest union rates were seen following the use of autograft bone for the purposes of lateralization. Interestingly, the union rate of autograft bone for the purposes of augmentation in eccentric bone loss is considerably lower and its impact on the long-term survivorship of the implant remains unknown


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 1 - 1
1 Nov 2016
Romeo A
Full Access

Glenohumeral osteoarthritis (OA) is a challenging clinical problem in young patients. Given the possibility of early glenoid component loosening in this population with total shoulder arthroplasty (TSA), and subsequent need for early revision, alternative treatment options are often recommended to provide pain relief and improved range of motion. While nonoperative modalities including nonsteroidal anti-inflammatory medications and physical therapy focusing on rotator cuff strengthening and scapular stabilization may provide some symptomatic relief, young patients with glenohumeral OA often need surgery for improved outcomes. Joint preserving techniques, such as arthroscopic debridement with removal of loose bodies and capsular release, with or without biceps tenotomy or tenodesis, remains a viable nonarthroplasty option in these patients. Clinical studies evaluating the outcomes of arthroscopic debridement for glenohumeral OA in young patients have had favorable outcomes. Evidence suggests that earlier stages of glenohumeral OA have more favorable outcomes with arthroscopic debridement procedures, with worse outcomes being observed in patients with complete joint space loss and bipolar chondral lesions. More advanced arthroscopic options include inferior osteophyte excision and axillary neurolysis or microfracture of chondral lesions, both of which have demonstrated favorable early clinical outcomes. Patients with some preserved joint space and small osteophytes can avoid arthroplasty and have improved functional outcomes after arthroscopic debridement for glenohumeral OA. Caution should be advised when indicating this procedure for patients with large osteophytes, grade IV bipolar lesions, biconcave glenoids, and complete loss of joint space


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 9 - 9
1 Dec 2016
Mellano C Chalmers P Mascarenhas R Kupfer N Forsythe B Romeo A Nicholson G
Full Access

Patients over 70 years old have subclinical or impending rotator cuff dysfunction, raising concern about TSA in this population. The purpose of this study is to examine whether reverse total shoulder arthroplasty (RTSA) should be considered for the treatment of glenohumeral osteoarthritis in the presence of an intact rotator cuff (GHOA+IRC in patients older than 70 years of age. Twenty-five elderly (>70 years) patients at least one year status-post RTSA for GHOA+IRC were matched via age, sex, body mass index, smoking status, and whether the procedure involved the dominant extremity with 25 GHOA+IRC patients who received anatomic total shoulder arthroplasty (TSA). Standardised outcome measures, range of motion, and treatment costs were compared between the two groups. Treatment cost was assessed using implant and physical therapy costs as well as reimbursement. Patients who received RTSA for GHO+IRC had significantly lower pre-operative active forward elevation (AFE, 69° vs. 98°, p <0.001) and experienced a greater change in AFE (p=0.01), but had equivalent AFE at final follow-up (140° vs. 142°, p=0.71). Outcomes were otherwise equivalent between groups with no differences. In both those patients who underwent TSA and those that underwent RTSA, significant improvements between pre-operative and final follow-up were seen in all standardised outcome measures and in AFE (p<0.001 in all cases). RTSA provided these outcomes at a cost savings of $2,025 in Medicare reimbursement due to decreased physical therapy costs. In patients over the age of 70 with GHOA+IRC, RTSA provides similar improvement in clinical outcomes to TSA at a reduced cost while avoiding issues related to the potential for subclinical or impending rotator cuff dysfunction


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 10 - 10
1 May 2019
Iannotti J
Full Access

Introduction. The degree of glenoid bone loss associated with primary glenohumeral osteoarthritis can influence the type of glenoid implant selected and its placement in total shoulder arthroplasty (TSA). The literature has demonstrated inaccurate glenoid component placement when using standard instruments and two-dimensional (2D) imaging without templating, particularly as the degree of glenoid deformity or bone loss worsens. Published results have demonstrated improved accuracy of implant placement when using three-dimensional (3D) computed tomography (CT) imaging with implant templating and patient specific instrumentation (PSI). Accurate placement of the glenoid component in TSA is expected to decrease component malposition and better correct pathologic deformity in order to decrease the risk of component loosening and failure over time. Different types of PSI have been described. Some PSI use 3D printed single use disposable instrumentation, while others use adjustable and reusable-patient specific instrumentation (R-PSI). However, no studies have directly compared the accuracy of different types of PSI in shoulder arthroplasty. We combined our clinical experience and compare the accuracy of glenoid implant placement with five different types of instrumentation when using 3D CT imaging, preoperative planning and implant templating in a series of 173 patients undergoing primary TSA. Our hypothesis was that all PSI technologies would demonstrate equivalent accuracy of implant placement and that PSI would show the most benefit with more severe glenoid deformity. Discussion and Conclusions. We demonstrated no consistent differences in accuracy of 3D CT preoperative planning and templating with any type of PSI used. In Groups 1 and 2, standard instrumentation was used in a patient specific manner defined by the software and in Groups 3, 4, and 5 a patient specific instrument was used. In all groups, the two surgeons were very experienced with use of the 3D CT preoperative planning and templating software and all of the instrumentation prior to starting this study, as well as very experienced with shoulder arthroplasty. This is a strength of the study when defining the efficacy of the technology, but limits the generalizability of the findings when considering the effectiveness of the technology with surgeons that may not have as much experience with shoulder arthroplasty and/or the PSI technology. Conversely, it could be postulated that greater improvements in accuracy may be seen with the studied PSI technology, when compared to no 3D planning or PSI, with less experienced surgeons. There could also be differences between the PSI technologies when used by less experienced surgeons, either across all cases or based upon the severity of pathology. When the surgeon is part of the method, the effectiveness of the technology is equally dependent upon the surgeon using the technology. A broader study using different surgeons is required to test the effectiveness of this technology. Comparing the results of this study with published results in the literature, 3D CT imaging and implant templating with use of PSI results in more accurate placement of the glenoid implant when compared to 2D CT imaging without templating and use of standard instrumentation. In previous studies, this was most evident in patients with more severe bone deformity. We believe that 3D CT planning and templating provides the most value in defining the glenoid pathology, as well as in the selection of the optimal implant and its placement. However, it should be the judgment of the surgeon, based upon their experience, to select the instrumentation to best achieve the desired result


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 319 - 319
1 Dec 2013
Galasso O Gasparini G Castricini R Mastroianni V
Full Access

BACKGROUND:. Few studies have evaluated at a medium-term follow-up the use of semiconstrained reverse shoulder arthroplasty (RSA) for primary glenohumeral osteoarthritis, massive rotator cuff tear, or cuff tear arthropathy excluding any other shoulder disease. Moreover, data on patients' quality of life after this surgery are lacking. METHODS:. In this prospective cohort study, 80 patients were evaluated after an RSA for either primary osteoarthritis, massive rotator cuff tear, or cuff tear arthropathy with the Constant-Murley score (CMS), ROM, and Short Form Health Survey (SF-36). A radiologic assessment was performed pre- and postoperatively. RESULTS:. At a mean 5-year follow-up, the cumulative survival rate was 97.3% and significant improvements in the CMS and ROM were observed when compared with the baseline values. The CMS was 93.2% of the sex- and age-matched normal values. The postoperative SF-36 scores showed no significant differences compared with normative data. Younger patients and subjects with worse preoperative conditions achieved the greatest benefit after RSA. A 70% scapular notching rate was noted and the length of follow-up was found to be associated with the severity of scapular notching. CONCLUSIONS:. This study introduces new predictors for surgical outcomes, and it shows that patients who had undergone RSA a mean of 5 years earlier exhibit similar functionality and health-related quality of life with respect to healthy controls


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 438 - 438
1 Dec 2013
Muh S Streit J Wanner JP Shishani Y Nowinski R Gobezie R
Full Access

Introduction. The treatment of glenohumeral arthritis in a young patient poses a significant challenge. Factors that affect decision making include higher activity levels, greater expectations, and concerns of implant longevity. Conflicting results have been reported in the literature. The purpose of this study is to report on our results for resurfacing of the humeral head combined with a biologic glenoid resurfacing using a soft tissue allograft for the treatment of glenohumeral osteoarthritis. Methods. From 2003 to 2009 a retrospective multi-center review of 15 humeral and biologic glenoid resurfacing procedures with a mean age of 36.5 yrs. was performed. Indications for surgery included a diagnosis of glenohumeral arthritis non-responsive to conservative treatment. Exclusion criteria included major glenoid osseous deficiency, advanced rheumatoid arthritis, and chronic infection. Results. Mean follow-up of 57.1 months showed that on average active forward elevation improved from 126.8° to 136° and external rotation improved from 27.1° to 35.3°. The mean pre-operative and post-operative VAS score only improved from 7.9 to 5.1. Five (29%) patients were converted a total shoulder arthroplasty (TSA) at an average of 24 months with no complications in the remaining patients. Discussion. The clinical outcome of humeral head resurfacing with soft tissue resurfacing of the glenoid has not yielded encouraging results, as both pain and function are not significantly improved. Due to the disappointing results of this procedure and high revision rate, it is no longer these authors primary treatment option for OA in the young. Determining the optimal treatment for osteoarthritis in the young patient is still being investigated


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 81 - 81
1 Apr 2018
Sabesan V Whaley J Lima D Villa J Pathak V Zhang L
Full Access

Introduction. Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on finite element analysis (FEA) modeling which will provide key insights into implant loosening mechanisms and stability. Materials and Methods. Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implant CAD models were created per precise manufacturers dimensions and sizes of the augmented implant designs. These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral subluxation force, relative micromotion at the bone-cement interface the glenoid, implant and cement mantle stress levels. The FEA model was then utilized to make measurements while the simulating abduction with the different implant designs. The biomechanical response parameters were compared between the models at comparable retroversion correction. Results. The model prediction of force ratio for the augmented wedge design was 0.56 and for the augmented step design was 0.87. The step design had higher force ratio than the wedge one at similar conformity settings. Micromotion was defined as a combination of three components based on different directions. The distraction measured for the wedge design was 0.05 mm and for the step component, 0.14 mm. Both implants showed a similar pattern translation wise. The greatest difference between the two implants was from the compression standpoint, where the step component showed almost three times more movement than the wedge design implant. Overall, the step design registered greater micromotion than the wedge one during abduction physiologic loading. The level of stress generated during abduction on the glenoid vault was 1.65 MPa for the wedge design and 3.78 MPa for the step one. All stress levels were found below the determined bone failure limit for the bone and polyethylene (10–20 MPa). Concerning implant stress, the results measured on the backside of the wedge and step components were 6.62 MPa and 13.25 MPa, respectively. Both components showed high level of stress level measured on the cement mantle, which exceeded the endurance limit for cement fracture (4 MPa). Discussion. The augmented glenoid is a novel surgical implant for use in with severe glenohumeral osteoarthritis. Unlike standard glenoid prosthetics, the augmented glenoid is better suited for correcting moderate to severe retroversion. Whereas a step design might provide higher glenohumeral stability, the tradeoff is higher glenoid vault, implant and cement mantle stress levels, and micromotion, indicating higher risks of implant loosening, failure or fracture over time, leading to poorer clinical outcomes and higher revision rates


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 4 - 4
1 May 2016
Roche C Flurin P Grey S Wright T Zuckerman J
Full Access

Introduction. Posterior glenoid wear is common with glenohumeral osteoarthritis. To correct posterior wear, surgeons may eccentrically ream the anterior glenoid to restore version. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids for aTSA and rTSA applications. This clinical study quantifies outcomes achieved using posteriorly augmented aTSA/rTSA glenoid implants in patients with severe posterior glenoid wear at 2 years minimum follow-up. Methods. 47 patients (mean age: 68.7yrs) with 2 years minimum follow-up were treated by 5 fellowship trained orthopaedic surgeons using either 8° posteriorly augmented aTSA/rTSA glenoid components in patients with severe posterior glenoid wear. 24 aTSA patients received posteriorly augmented glenoids (65.8 yrs; 7F/17M) for OA and 23 rTSA patients received posteriorly augmented glenoids (71.8 yrs; 9F/14M) for treatment of CTA and OA. Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and external rotation were also measured to quantify function. Average follow-up was 27.5 months (aTSA 29.4; rTSA 25.5). A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements. Results. A comparison of pre-operative, post-operative, and pre-to-post improvement in outcomes are presented in Tables 1–3, respectively. As described in Table 1, pre-operative outcomes were similar for patients receiving posterior augment aTSA and posterior augment rTSA implants, with only active abduction being significantly less in rTSA patients. Additionally, rTSA patients were noted to be significantly older (p=0.0434) and have significantly longer follow-up (p=0.0358) though no difference was noted in mean patient height, weight, or BMI between cohorts. As described in Table 2, at 2 years minimum follow-up posterior augment aTSA patients were associated with significantly greater SST scores and also had significantly more active abduction and active external rotation than posterior augment rTSA patients. However, as described in Table 3, no significant difference was observed in pre-to-post improvement of outcome scoring metrics and only improvement in active external rotation was observed to be significantly different between the two cohorts. No complications were reported for either posterior augment implant cohort. Conclusions. These results demonstrate positive outcomes can be achieved at 2 years minimum follow-up in patients with severe posterior wear using either posteriorly augmented aTSA/rTSA glenoid implants. While relative differences in outcomes were noted, these mean differences are expected due to differing indications and associated differences in rotator cuff status. Due to the aforementioned concerns of aseptic glenoid loosening in patients with severe posterior glenoid wear, some have recommend treating patients with posterior glenoid wear using only rTSA regardless of the status of the patient's rotator cuff. The results of this study demonstrate that patients with posterior glenoid wear and a functioning rotator cuff can be successfully treated with posterior augmented aTSA as well. Additional and longer-term follow-up is needed to confirm these positive outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 164 - 164
1 Dec 2013
Roche C Diep P Grey S Flurin PH Zuckerman J Wright T
Full Access

Introduction. Posterior glenoid wear is common in glenohumeral osteoarthritis. Tightening of the subscapularis causes posterior humeral head subluxation and a posterior load concentration on the glenoid. The reduced contact area causes glenoid wear and potentially posterior instability. To correct posterior wear and restore glenoid version, surgeons may eccentrically ream the anterior glenoid to re-center the humeral head. However, eccentric reaming undermines prosthesis support by removing unworn anterior glenoid bone, compromises cement fixation by increasing the likelihood of peg perforation, and medializes the joint line which has implications on joint stability. To conserve bone and preserve the joint line when correcting glenoid version, manufacturers have developed posterior augment glenoids. This study quantifies the change in rotator cuff muscle length (relative to a nonworn/normal shoulder) resulting from three sizes of posterior glenoid defects using 2 different glenoids/reaming methods: 1) eccentric reaming using a standard (nonaugmented) glenoid and 2) off-axis reaming using an 8, 12, and 16° posterior augment glenoid. Methods. A 3-D computer model was developed in Unigraphics (Siemens, Inc) to simulate internal/external rotation and quantify rotator cuff muscle length when correcting glenoid version in three sizes of posterior glenoid defects using posterior augmented and non-augmented glenoid implants. Each glenoid was implanted in a 3-D digitized scapula and humerus (Pacific Research, Inc); 3 sizes (small, medium, and large) of posterior glenoid defects were created in the scapula by posteriorly shifting the humeral head and medially translating the humeral head into the scapula in 1.5 mm increments. Five muscles were simulated as three lines from origin to insertion except for the subscapularis which was wrapped. After simulated implantation in each size glenoid defect, the humerus was internally/externally rotated from 0 to 40° with the humerus at the side. Muscle lengths were measured as the average length of the three lines simulating each muscle at each degree of rotation and compared to that at the corresponding arm position for the normal shoulder without defect to quantify the percentage change in muscle length for each configuration. Results. As depicted in Figures 1–3, muscle shortening was observed for each muscle for each size defect. For each size uncorrected defect, the subscapularis was observed to wrap around the anterior glenoid rim during internal rotation and with the arm at neutral; both eccentric successfully re-centered the humeral head and eliminate subscapularis wrapping around the anterior glenoid rim. However, eccentric reaming was also found to medialize the joint line and resulted in approximately 1.5, 2.5, and 3.5% additional muscle shortening for each muscle relative to the augmented glenoid in each size defect, respectively. Discussion and Conclusions. This study demonstrates that posterior glenoid wear medializes the joint line and results in rotator cuff muscle shortening. Augmented glenoids offer the potential to better restore the joint line and minimize muscle shortening, particularly when used in large glenoid defects. Future work should investigate the clinical significance of 1.5–3.5% of muscle shortening and evaluate the functional impact of subscapularis wrapping around the anterior glenoid rim


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 207 - 207
1 Dec 2013
Roche C Flurin PH Marczuk Y Wright T Zuckerman J
Full Access

Introduction. Both anatomic (aTSA) and reverse (rTSA) total shoulder arthroplasty are the standard of care for various end-stage degenerative conditions of the glenohumeral joint. Osteoarthritis (OA) is the most common indication for aTSA while Rotator Cuff Tear Arthropathy (CTA) is the most common indication for rTSA. Worldwide, the usage of both aTSA and rTSA has increased significantly due in part, to the predictability of acceptable outcomes achieved with each prosthesis type. The aim of this study is to quantify outcomes using 5 different metrics and compare results achieved for each indication using one platform total shoulder arthroplasty system which utilizes the same humeral component and instrumentation to perform both aTSA or rTSA. Methods. 200 patients (70.9 ± 7.3 yrs) were treated by two orthopaedic surgeons using either aTSA or rTSA. 73 patients received aTSA (67.4 ± 8.0 yrs) for treatment of OA (PHF: 64 patients; YM: 9 patients) and 127 patients received a rTSA (72.9 ± 6.1 yrs) for treatment of CTA (PHF: 53 patients; YM: 74 patients). These patients were scored pre-operatively and at latest follow-up using the SST, UCLA, ASES, Constant, and SPADI metrics; active abduction, forward flexion, and external rotation were also measured. The average follow-up for all patients was 31.4 ± 9.7 months (aTSA: 32.5 ± 12.1 months; rTSA: 30.8 ± 8.0 months). A Student's two-tailed, unpaired t-test was used to identify differences in pre-operative, post-operative, and pre-to-post-operative improvements in results, where p < 0.05 denoted a significant difference. Results. All patients demonstrated significant improvements in pain and function following treatment of OA with aTSA and of CTA with rTSA. No instances of instability or glenoid loosening were reported in either cohort; one instance of infection occurred in the rTSA cohort. The average pre- and post-operative outcome scores and range of motion measurements are presented in Figures 1 and 2, respectively. The average improvement in outcome scores and range of motion measurements are presented in Figure 3, respectively. Discussion and Conclusions. The results of this study demonstrate that CTA patients had significantly lower pre-operative scores as measured by 3 of the 5 metrics and significantly less active abduction and forward flexion than OA patients. While aTSA and rTSA were used to treat different indications; each treatment method provided a significant improvement in all 5 outcome score measurements and all 3 motion measurements for its respective indication at a similar mean follow-up. Interestingly, a few comparative differences were observed: aTSA was associated with significantly higher post-operative scores according to 2 of the 5 metrics, greater range of motion according to all 3 active motion measurements, and was demonstrated to be significantly more effective at improving active external rotation; whereas, rTSA was associated with significantly larger improvements in outcome scores according to 2 of the 5 metrics and was demonstrated to be significantly more effective at improving active forward flexion. Additional and longer term follow-up is required to confirm these findings