Advertisement for orthosearch.org.uk
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 44 - 44
1 Sep 2012
De Wilde L
Full Access

Background

There is no consensus on which glenoid plane should be used in total shoulder arthroplasty. Nevertheless, anatomical reconstruction of this plane is imperative for the success of a total shoulder arthroplasty.

Methods

Three-dimensional reconstruction CT-scans were performed on 152 healthy shoulders. Four different glenoid planes, each determined by three surgical accessible bony reference points, are determined. The first two are triangular planes, defined by the most anterior and posterior point of the glenoid and respectively the most inferior point for the Saller's Inferior plane and the most superior point for the Saller's Superior plane. The third plane is formed by the best fitting circle of the superior tubercle and the most anterior and posterior point at the distal third of the glenoid (Circular Max). The fourth plane is formed by the best fitting circle of three points at the rim of the inferior quadrants of the glenoid (Circular Inferior). We hypothesized that the plane with normally distributed parameters, narrowest variability and best reproducibility would be the most suitable surgical glenoid plane.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 74 - 74
1 Mar 2021
Meynen A Verhaegen F Debeer P Scheys L
Full Access

During shoulder arthroplasty the native functionality of the diseased shoulder joint is restored, this functionality is strongly dependent upon the native anatomy of the pre-diseased shoulder joint. Therefore, surgeons often use the healthy contralateral scapula to plan the surgery, however in bilateral diseases such as osteoarthritis this is not always feasible. Virtual reconstructions are then used to reconstruct the pre-diseased anatomy and plan surgery or subject-specific implants. In this project, we develop and validate a statistical shape modeling method to reconstruct the pre-diseased anatomy of eroded scapulae with the aim to investigate the existence of predisposing anatomy for certain shoulder conditions. The training dataset for the statistical shape model consisted of 110 CT images from patients without observable scapulae pathologies as judged by an experienced shoulder surgeon. 3D scapulae models were constructed from the segmented images. An open-source non-rigid B-spline-based registration algorithm was used to obtain point-to-point correspondences between the models. The statistical shape model was then constructed from the dataset using principle component analysis. The cross-validation was performed similarly to the procedure described by Plessers et al. Virtual defects were created on each of the training set models, which closely resemble the morphology of glenoid defects according to the Wallace classification method. The statistical shape model was reconstructed using the leave-one-out method, so the corresponding training set model is no longer incorporated in the shape model. Scapula reconstruction was performed using a Monte Carlo Markov chain algorithm, random walk proposals included both shape and pose parameters, the closest fitting proposal was selected for the virtual reconstruction. Automatic 3D measurements were performed on both the training and reconstructed 3D models, including glenoid version, critical shoulder angle, glenoid offset and glenoid center position. The root-mean-square error between the measurements of the training data and reconstructed models was calculated for the different severities of glenoid defects. For the least severe defect, the mean error on the inclination, version and critical shoulder angle (°) was 2.22 (± 1.60 SD), 2.59 (± 1.86 SD) and 1.92 (± 1.44 SD) respectively. The reconstructed models predicted the native glenoid offset and centre position (mm) an accuracy of 0.87 (± 0.96 SD) and 0.88 (± 0.57 SD) respectively. The overall reconstruction error was 0.71 mm for the reconstructed part. For larger defects each error measurement increased significantly. A virtual reconstruction methodology was developed which can predict glenoid parameters with high accuracy. This tool will be used in the planning of shoulder surgeries and investigation of predisposing scapular morphologies


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 112 - 112
1 Dec 2020
Meynen A Verhaegen F Mulier M Debeer P Scheys L
Full Access

Pre-operative 3D glenoid planning improves component placement in terms of version, inclination, offset and orientation. Version and inclination measurements require the position of the inferior angle. As a consequence, current planning tools require a 3D model of the full scapula to accurately determine the glenoid parameters. Statistical shape models (SSMs) can be used to reconstruct the missing anatomy of bones. Therefore, the objective of this study is to develop and validate an SSM for the reconstruction of the inferior scapula, hereby reducing the irradiation exposure for patients. The training dataset for the statistical shape consisted of 110 CT images from patients without observable scapulae pathologies as judged by an experienced shoulder surgeon. 3D scapulae models were constructed from the segmented images. An open-source non-rigid B-spline-based registration algorithm was used to obtain point-to-point correspondences between the models. A statistical shape model was then constructed from the dataset using principal component analysis. Leave-one-out cross-validation was performed to evaluate the accuracy of the predicted glenoid parameters from virtual partial scans. Five types of virtual partial scans were created on each of the training set models, where an increasing amount of scapular body was removed to mimic a partial CT scan. The statistical shape model was reconstructed using the leave-one-out method, so the corresponding training set model is no longer incorporated in the shape model. Reconstruction was performed using a Monte Carlo Markov chain algorithm, random walk proposals included both shape and pose parameters, the closest fitting proposal was selected for the virtual reconstruction. Automatic 3D measurements were performed on both the training and reconstructed 3D models, including glenoid version, inclination, glenoid centre point position and glenoid offset. In terms of inclination and version we found a mean absolute difference between the complete model and the different virtual partial scan models of 0.5° (SD 0.4°). The maximum difference between models was 3° for inclination and 2° for version. For offset and centre point position the mean absolute difference was 0 mm with an absolute maximum of 1 mm. The magnitude of the mean and maximum differences for all anatomic measurements between the partial scan and complete models is smaller than the current surgical accuracy. Considering these findings, we believe a SSM based reconstruction technique can be used to accurately reconstruct the glenoid parameters from partial CT scans


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 6 - 6
1 Aug 2017
Sperling J
Full Access

Lateralization of the reverse arthroplasty may be desirable to more effectively tension the remaining rotator cuff, decrease scapular notching, improve the cosmetic appearance of the shoulder, and improve stability as well as the arc of motion prior to impingement. There are two primary options to lateralise a reverse shoulder arthroplasty: bone graft with a long post (BIO-RSA) vs. using metal. The two metal options generally include a thicker glenosphere or a thicker glenoid baseplate. Potential benefits of a BIO-RSA include lateralization of the glenoid center of rotation but without placing the center of rotation lateral to the prosthetic-bone interface. By maintaining the position of the center of rotation, the shear forces at the prosthesis-bone interface are lessened and are converted to compressive forces which will minimise glenoid failure. Edwards et al. performed a prospective study on a bony increased offset reverse arthroplasty. Among the 18 shoulders in the BIO-RSA group, the incidence of notching was 78% compared to controls 70%. The graft completely incorporated in 12 (67%), partially incorporated in 4 (22%), and failed to incorporate in 2 (11%). Frankle et al. reported on the minimum 5-year follow-up of reverse arthroplasty with a central compression screw and a lateralised glenoid component. The survivorship was 94% at 5 years. There were seven (9%) cases of scapular notching and no patient had glenoid baseplate loosening or baseplate failure. The authors noted that the patients maintained their improved function and radiographic results at a minimum of five years. In summary, lateralisation of the glenosphere is an attractive option to improve the outcome of reverse arthroplasty. Benefits of lateralisation with metal rather than bone graft include elimination of concern over bone graft healing or resorption. In addition, the procedure has the potential to be more precise with the exact offset amount known pre-operatively as well as improved efficiency of the procedure. Preparing the graft takes additional OR time and there is variable quality of the bone graft


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 22 - 22
1 Dec 2013
Frankle M Cabezas A Gutierrez S Teusink M Santoni B Schwartz D
Full Access

Background:. Currently, there are a variety of different reverse shoulder implant designs but few anatomic studies to support the optimal selection of prosthetic size. This study analyzed the glenohumeral relationships of patients who underwent reverse shoulder arthroplasty (RSA). Methods:. Ninety-two shoulders of patients undergoing primary RSA for a massive rotator cuff tear without bony deformity or deficiency and 10 shoulders of healthy volunteers (controls) were evaluated using three-dimensional CT reconstructions and computer aided design (CAD) software. Anatomic landmarks were used to define scapular and humeral planes in addition to articular centers. After aligning the humeral center of rotation with the glenoid center, multiple glenohumeral relationships were measured and evaluated for linearity and size stratification. The correction required to transform the shoulder from its existing state (CT scan) to a realigned image (CAD model) was compared between the RSA and control groups. Size stratification was verified for statistical significance between groups. Generalized linear modeling was used to investigate if glenoid height, coronal humeral head diameter and gender were predictive of greater tuberosity positions. Results:. All 92 shoulders were grouped into three different categories based on glenoid height. The humeral head size, glenoid size, lateral offset, and inferior offset all increased linearly (r. 2. > 0.95), but the rate of increase varied (slopes range from 0.59 to 1.9). Translations required to normalize the shoulder joint were similar between healthy and pathologic cases except for superior migration. Glenoid height, coronal humeral head diameter and gender predicted the greater tuberosity position within 1.09 ± 0.84 mm of actual position in ninety percent of the patient population. Morphometric measurements for each stratified group were all found to be statistically significant between groups (p ≥ 0.05). Conclusion:. Patients who undergo RSA with minimal bony deformity have superior subluxation of the glenohumeral joint. Predicting the anatomic position of the greater tuberosity is dependent on gender, glenoid height and coronal humeral head diameter. This anatomic data provides a guide to avoid inadvertent mismatch of prosthetic and patient shoulder size. If the surgeon is able to measure glenoid height and coronal humeral head diameter preoperatively, accurate planning of the position of the greater tuberosity can be accomplished


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 7 - 7
1 Oct 2014
Ohl X Lagacé P Billuart F Hagemeister N Gagey O Skalli W
Full Access

Accurate and reproducible measurement of three-dimensional shoulder kinematics would contribute to better understanding shoulder mechanics, and therefore to better diagnosing and treating shoulder pathologies. Current techniques of 3D kinematics analysis use external markers (acromial cluster or scapula locator) or medical imaging (MRI or CT-Scan). However those methods present some drawbacks such as skin movements for external markers or cost and irradiation for imaging techniques. The EOS low dose biplanar X-Rays system can be used to track the scapula, humerus and thorax for different arm elevation positions. The aim of this study is to propose a novel method to study scapulo-thoracic kinematics from biplanar X-rays and to assess its reliability during abduction in the scapular plane. This study is based on the EOS™ system (EOS Imaging, Paris, France), which allows acquisition of 2 calibrated, low dose, orthogonal radiographs with the subject standing at 30 to 40° angle of coronal rotation to the plane of one of the X-ray beams, in order to limit superimposition with the ribcage and spine. Seven abduction positions in the scapular plane were maintained by the subjects for 10 seconds, during X-ray acquisition. Between two positions, the subjects returned at rest position. Arm elevations were approximately 0, 10, 20, 30, 60, 90 and 150° (position 1 to 7). Six subjects were enrolled to perform a reproducibility study based on the 3D reconstructions of 2 experienced observers three times each. For each subject, a personalised 3D reconstruction of the scapula was created. The observer digitises clearly visible anatomical landmarks on both stereoradiographs for each arm position. These landmarks are used to make a first adjustment of a parameterised 3D model of the scapula. This provides a pre-personalised model of the subject's scapula which is then rigidly registered on each pair of X-rays until its retroprojection fits best on the contours that are visible on the X-rays. The thorax coordinate system (CS) was built following the ISB (International Society of Biomechanics) recommendations. The CS associated to the scapula was a glenoid centred CS based on the ellipse which fit on the glenoid rim on the 3D model of scapula. Scapular CS orientation and translation in the thorax CS was calculated following a Y,X,Z angle sequence for each position. Each 3D reconstruction of the scapula was performed in approximately 30 minutes. The most reproducible rotation was upward/downward rotation (along X axis) with a 95% confidence interval (95% CI) from 2.71° to 3.61°. Internal/external rotation and anterior/posterior tilting were comprised respectively between 5.18° to 8.01° and 5.50° to 7.23° (CI 95%). The most reproducible translation was superior-inferior translation (along Y axis) with a 95% CI from 1.22mm to 2.46mm. Translation along X axis (antero-posterior) and Z axis (medio-lateral) were comprised respectively between 2.49mm to 4.26mm and 2.47mm to 3.30mm (CI 95%). We presented a new technique for 3D functional quantitative analysis of the scapulo-thoracic joint. This technique can be used with confidence; uncertainty of the measures seems acceptable compared to the literature. Main advantages of this technique are the very low dose irradiation compared to the CT-Scan and the possibility to study arm elevation above 120°


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 141 - 141
1 Mar 2008
Nguyen D Ferreira L Brownhill J Kedgley A Macdermid J King G Drosdowech D Johnson J Faber K Garvin G Mozzon J
Full Access

Purpose: Glenoid replacement remains challenging due to the difficult visualization of anatomical reference landmarks and highly variable version angles. Improper positioning of the glenoid component leads to loosening, early wear, and instability. The objective of this study was to develop and evaluate a tracking system for glenoid implantation. We hypothesized that Computer Assisted Glenoid Implantation (CAGI) would achieve a more accurate and reliable placement of the glenoid component compared to traditional methods. Methods: 3D CT models of sixteen paired cadaveric shoulder specimens were reconstructed and angles were measured using 3D modeling softwares. Jigs were developed to track instruments and to correct for scapular motion. A standardized protocol for determining in real-time via electromagnetic tracking the glenoid centre, version, inclination and ultimate component placement was previously developed and validated in our laboratory. Specimens were randomized to either traditional or CAGI performed by one of two blinded fellowship trained shoulder surgeons. The mean age was 67 years (range 61–88). Native version and inclination were similar in both groups. All phases of glenoid implantation were navigated. Results: CAGI was more accurate in achieving the correct version during all phases of glenoid implantation (p < 0.05; paired t-test). CAGI CONTROL Initial pin * 6.3 ± 2.9° Reaming *7.0 ± 3.9° Post drilling * 0.6 ± 0.4° 8.3 ± 4.6°|Post cement * 2.3 ± 2.0° 7.9 ± 3.6°|Post implant CT * 1.8 ± 0.9° 7.7 ± 4.0°. Table 1. Absolute values of the mean error ± SD of version angles obtained with either CAGI or the traditional method (goal = 0° version; * p < 0.05). The largest errors with traditional were observed during drilling and reaming where visualization was especially obscured by the reamer heads. The trend was to retrovert the glenoid. There was no difference with respect to inclination angles (p > 0.05). Conclusions: Preoperative planning using CT imaging with 3D modeling and intra-operative tracking were combined to produce improved accuracy and reliability of glenoid implantation. Funding: Other Education Grant. Funding Parties: National Sciences & Engineering Research Council research grant


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims

The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different.

Methods

A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 107 - 107
1 Jan 2016
Walker D Struk A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) has had rapidly increasingly utilization since its approval for U.S. use in 2004. RTSA accounted for 11% of extremity market procedure growth in 201. Although RTSA is widely used, there remain significant challenges in determining the location and configuration of implants to achieve optimal clinical and functional results. The goal of this study was to measure the 3D position of the shoulder joint center, relative to the center of the native glenoid face, in 16 subjects with RTSA of three different implant designs, and in 12 healthy young shoulders. CT scans of 12 healthy and 16 pre-operative shoulders were segmented to create 3D models of the scapula and humerus. A standardized bone coordinate system was defined for each bone (Figure 1). For healthy shoulders, the location of the humeral head center was measured relative to the glenoid face center. For the RTSA shoulders, a two-step measurement was required. First, 3D models of the pre-operative bones were reconstructed and oriented in the same manner as for healthy shoulders. Second, 3D model-image registration was used to determine the post-operative implant positioning relative to the bones. The 3D position and orientation of the implants and bones were determined in a sequence of six fluoroscopic images of the arm during abduction, and the mean implant-to-bone relationships were used to determine the surgical positioning of the implants (Figure 2). The RTSA center of rotation was defined as the offset from the center of the implant glenosphere to the center of the native glenoid face. The center of rotation in RTSA shoulders varied over a much greater range than the native shoulders (Table 1 (Figure 3)). Lateral offset of the joint center in RTSA shoulders was at least 6 mm smaller than the smallest joint center offset in the healthy shoulders. The center of rotation in RTSA shoulders was significantly more inferior than in healthy shoulders. The range of anterior/posterior placement of the rotation center for RTSA shoulders was bounded by the range for normal shoulders. How to best position RTSA implants for optimal patient outcomes remains a topic of great debate and research interest. We found that the 3D joint center position can vary over a supraphysiologic range in shoulders with RTSA, and that this variation is primarily in the coronal plane. By relating these geometric variations to muscle, shoulder and clinical function, we hope to establish methods and strategies for predictably obtaining the best clinical and functional outcomes for RTSA patients on a per-subject basis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 172 - 172
1 Dec 2013
Simon P Diaz M Schwartz D Santoni B Frankle M
Full Access

Introduction:. The complex 3D geometry of the scapula and the variability among individuals makes it difficult to precisely quantify its morphometric features. Recently, the scapular neck has been recognized as an important morphometric parameter particularly due to the role it plays in scapular notching, which occurs when the humeral component of a reverse shoulder arthroplasty (RSA) prosthesis engages the posterior column of the scapula causing mechanical impingement and osseous wear. Prosthetic design and positioning of the glenoid component have been accepted as two major factors associated with the onset of notching in the RSA patient population. The present image-based study aimed to develop an objective 3D approach of measuring scapular neck, which when measured pre-operatively, may identify individuals at risk for notching. Materials and Methods:. A group of 81 subjects (41 M, 69.7 ± 8.9 yrs.; 40 F, 70.9 ± 8.1 yrs.) treated with RSA were evaluated in this study. The 3D point-cloud of the scapular geometry was obtained from pre-operative computed tomography (CT) scans and rendered in Mimics. Subsequently, a subject-specific glenoid coordinate system was established, using the extracted glenoid surface of each scapula as a coordinate reference. The principal component analysis approach was used to establish three orthogonal coordinate axes in the geometric center of the glenoid. Utilization of glenoid-specific reference planes (glenoid, major axis, and minor axis plane) were selected in order to remove subjectivity in assessing “true” anterior/posterior and profile views of the scapula. The scapular neck length was defined as the orthogonal distance between the glenoid surface and the point on the posterior column with the significant change of curvature (Fig. 1). In addition, the angle between the glenoid plane, area center of the glenoid, and the point of significant change of the curvature were assessed (Fig. 2). This new parameter was developed to serve as a predictive critical value for the occurrence of notching. The incidence of notching increases as the value of the notching angle decreases. In order to evaluate relationships between glenoid and scapular neck, the glenoid width and height was also measured at the glenoid plane. Results:. Glenoid neck length and notching angle within the population were normally distributed with mean values of 7.8 ± 2.3 mm and 19.6 ± 4.8°, respectively (Fig. 3). No gender difference was found (p = 0.676). In one subject, a glenoid neck length of less than 1 mm was measured with the notching angle less than 2.5°. No association between glenoid neck length and glenoid size were identified (vs. glen. height r. 2. = 0.001, and vs. glen. width r. 2. = 0.05). Conclusion:. The present study reported on the scapular neck length and notching angle as measureable morphometric parameters that follow a normal distribution throughout the population and that are not correlated to the subject's glenoid size. Pre-operative acquisition of these novel and unique CT-based measurements may promote more appropriate RSA prosthesis selection to account for subject-specific anatomy in an effort to avoid scapular notching. Inferior placement of a baseplate or lateralization of glenoid component center of rotation (either biologically or mechanically) both serves to theoretically increase the notching angle


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 275 - 275
1 Dec 2013
Costantini O Choi D Gulotta L Kontaxis A
Full Access

Lateralizing the center of rotation in reverse shoulder arthroplasty has been the subject of renewed interest due to complications associated with medialized center of rotation implants. Benefits of lateralization include: increased joint stability, decreased incidence of scapular notching, increased range of motion, and cosmetic appeal. However, lateralization may be associated with increased risk of glenoid loosening, which may result from the increased shear forces and the bending stresses that manifest at the bone-implant interface. To address glenoid loosening in reverse implants with lateralized joint centers, recent studies have focused on testing and improving implant fixation. However, these studies use loads derived from literature specific to subjects with normal anatomy. The aim of this study is to characterize how joint center lateralization affects the loading in reverse shoulder arthroplasty. Using an established computational shoulder model that describes the geometry of a commercial reverse prosthesis (DELTA® III, DePuy), motion in abduction, scapular plane elevation, and forward flexion was simulated. The simulations were run for five progressively lateralized centers of rotation: −5, 0, +5, +10, and +15 mm (Figure 1). The model was modified to simulate a full thickness rotator cuff tear, where all cuff musculature except Teres Minor were excluded, to reflect the clinical indication for reverse shoulder arthroplasty on cuff tear arthropathy patients. To analyze the joint contact forces, the resultant glenohumeral force was decomposed into compression, anterior-posterior shear, and superior-inferior shear on the glenoid. Joint center lateralization was found to affect the glenohumeral joint contact forces and glenoid loads increased by up to 18% when the center was lateralized from −5 mm to +15 mm. Compressive forces were found to be more sensitive to lateralization in abduction, while changes in shear forces were more affected in forward flexion and scapular plane abduction. On average, the superior shear component showed the largest increases due to lateralization (up to a 21% increase), while the anterior-posterior shear component showed larger changes than those of compression, except in the most lateralized center position (Figure 2). The higher joint loads in the lateralized joint centers reflect a shortening of the Deltoid muscle moment arms (Figure 3), since the muscle needs to exert more force to provide the desired motions. The additional shear forces generated by the lateralization may increase the risk of the ‘rocking-horse’ effect. Together with the lateralized joint center, this creates an additional bending stress at the bone-implant interface that puts the implant at further risk of loosening (Figure 1). Current studies on implant fixation tend to use loads in compression and superior shear that exceed the forces seen in this study but have not investigated anterior-posterior shear loads. Our data support that loading in anterior-posterior direction can be significant. Using inappropriate loads to design fixation may result in excessive loss of bone stock and/or unforeseen implant loosening. The implication is that future studies may be performed using this more relevant data set to navigate the tradeoff between fixation and bone conservation


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 513 - 518
1 Apr 2014
Terrier A Ston J Larrea X Farron A

The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR.

Cite this article: Bone Joint J 2014;96-B:513–18.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 530 - 535
1 Apr 2013
Roche CP Marczuk Y Wright TW Flurin P Grey S Jones R Routman HD Gilot G Zuckerman JD

This study provides recommendations on the position of the implant in reverse shoulder replacement in order to minimise scapular notching and osteophyte formation. Radiographs from 151 patients who underwent primary reverse shoulder replacement with a single prosthesis were analysed at a mean follow-up of 28.3 months (24 to 44) for notching, osteophytes, the position of the glenoid baseplate, the overhang of the glenosphere, and the prosthesis scapular neck angle (PSNA).

A total of 20 patients (13.2%) had a notch (16 Grade 1 and four Grade 2) and 47 (31.1%) had an osteophyte. In patients without either notching or an osteophyte the baseplate was found to be positioned lower on the glenoid, with greater overhang of the glenosphere and a lower PSNA than those with notching and an osteophyte. Female patients had a higher rate of notching than males (13.3% vs 13.0%) but a lower rate of osteophyte formation (22.9% vs 50.0%), even though the baseplate was positioned significantly lower on the glenoid in females (p = 0.009) and each had a similar mean overhang of the glenosphere.

Based on these findings we make recommendations on the placement of the implant in both male and female patients to avoid notching and osteophyte formation.

Cite this article: Bone Joint J 2013;95-B:530–5.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 751 - 756
1 Jun 2008
Terrier A Reist A Merlini F Farron A

Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed prosthesis with an anatomical implant. Active abduction was simulated from 0° to 150° of elevation. With the anatomical prosthesis, the joint force almost reached the equivalence of body weight. The joint force was half this for the reversed prosthesis. The direction of force was much more vertically aligned for the reverse prosthesis, in the first 90° of abduction. With the reversed prosthesis, abduction was possible without rotator cuff muscles and required 20% less deltoid force to achieve it.

This force analysis confirms the potential mechanical advantage of reversed prostheses when rotator cuff muscles are deficient.