Objectives. The aim of this experimental study on New Zealand’s white rabbits
was to investigate the transplantation of autogenous growth plate
cells in order to treat the injured
Objectives. The aim of this study was to examine whether asymmetric loading
influences macrophage elastase (MMP12) expression in different parts
of a rat tail intervertebral disc and
Sex hormones play important roles in the regulation of the proliferation, maturation and death of chondrocytes in the epiphyseal
INTRODUCTION. Endochondral ossification in the
Our aim was to evaluate the expression of transcription factors CCAAT/enhancer-binding protein-beta (C/EBP. β. ) and C/EBP-homologous protein (CHOP) in the
Chondrocytes of the
The
Introduction. The proteoglycan aggrecan is a major component of the cartilaginous matrices which provides resistance against compressive forces. Spontaneously occurring functional null mutations in the aggrecan gene (Acan) in various species lead to perinatal chondrodysplasia. The aim of the present study was to investigate the cellular and biomechanical properties of the cartilaginous
Background. The cartilaginous
Introduction. Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Methods. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's longitudinal axis was aligned with the load sensor, and specimens underwent unidirectional tensile loading at 1 mm/sec until rupture. Data on load and displacement were captured at 100 Hz. Results. One-way ANOVA showed statistically significant differences in maximum failure force among loading conditions (p = 0.0039). Post hoc analysis indicated significant differences between the control and 500N (non-twisted) groups (p = 0.014) and between the control and 500N (twisted) groups (p = 0.003). However, no significant difference was found between 500N (non-twisted) and 500N (twisted) groups (p = 0.2645). Two samples broke from the distal femur
Introduction and Objective. Neoangiogenesis drives the replacement of mineralized cartilage by trabecular bone during bone growth regulated by molecules like e.g. VEGF, OPG and RANKL and the close interaction of progenitors of osteoblasts, chondrocytes, endothelial cells and osteoclasts/chondroclasts. The Heparan sulfate proteoglycan Syndecan-1 (Sdc-1) plays a role in the interaction between osteoclasts and osteoblasts and the development of blood vessels. As the processes of osteogenesis and angiogenesis are closely related to each other in bone, we expected Sdc-1 to have an influence on vessel structure during aging. Therefore, angiogenesis at the
Introduction. Epiphysiodesis, defined as the process of closing the
In osteoarthritis, chondrocytes acquire a hypertrophic phenotype that contributes to matrix degradation. Inflammation is proposed as trigger for the shift to a hypertrophic phenotype. Using in vitro culture of human chondrocytes and cartilage explants we could not find evidence for a role of inflammatory signalling activation. We found, however, that tissue repair macrophages may contribute to the onset of hypertrophy (doi: 10.1177/19476035211021907) Intra-articularly injected triamcinolone acetonide to inhibit inflammation in a murine model of collagenase-induced osteoarthritis, increased synovial macrophage numbers and osteophytosis, confirming the role of macrophages in chondrocyte hypertrophy occurring in osteophyte formation (doi: 10.1111/bph.15780). In search of targets to inhibit chondrocyte hypertrophy, we combined existing microarray data of different cartilage layers of murine
Neoangiogenesis drives the replacement of mineralised cartilage by trabecular bone during bone growth regulated by molecules like e.g. VEGF, OPG and RANKL. The Heparan sulfate proteoglycan Syndecan-1 (Sdc1) plays a role in the interaction of osteoclasts and osteoblasts and the development of blood vessels. We expected Sdc1 to have an influence on bone structure and vessel development. Therefore, bone structure and angiogenesis at the
Introduction and Objective. Klinefelter Syndrome (KS, karyotype 47,XXY) is the most frequent chromosomal aneuploidy in males, as well as the most common cause of infertility in men. Patients suffer from a lack of testosterone, i.e. hypergonadotropic hypogonadism provoking infertility, but KS men also show an increased predisposition to osteoporosis and a higher risk of bone fracture. In a mouse model for human KS, bone analysis of adult mice revealed a decrease in bone mass that could not be rescued by testosterone replacement, suggesting a gene dosage effect originating from the supernumerary X-chromosome on bone metabolism. Usually, X chromosome inactivation (XCI) compensates for the dosage imbalance of X-chromosomal genes between sexes. Some studies suggested that expression of genes that escape silencing of the supernumerary X-chromosome (e.g. androgen receptor) has an impact on sex differences, but may also cause pathological changes in males. As a promising new such candidate for a musculoskeletal escape gene, we identified the integral membrane protein (ITM) 2a, which is encoded on the X-chromosome and related to enchondral ossification. The aim of the project was to characterize systemic bone loss in the course of aging in our KS mouse model, and whether the supernumerary X-chromosome causes differences in expression of genes related to bone development. Materials and Methods. Bone structure of 24 month (=aged) old male wild type (WT) and 41, XXY mice (B6Ei.Lt-Y) were analysed by μCT. Afterwards bones were paraffin embedded and cut. In addition, tissue of brain, liver, kidney, lung and heart were also isolated and embedded for IHC staining. Using an anti-ITM2a antibody, expression and cellular localization of ITM2a was evaluated. IHC was also performed on musculoskeletal tissue of WT embryos (E18.5) and neonatal mice to determine possible age-related differences. Results. In 24 month old mice, the analysis of the lumbar vertebrae revealed a significantly lower BV/TV, trabecular bone volume and trabecular number in the XXY- group compared to WT. Trabecular thickness appeared lower but did not reach significance, with the cortical thickness being significantly higher in the XXY- group. High expression of ITM2a was detected in bone slices of both karyotypes in the chondrocytes inside the
Summary Statement. The implantation of scaffold-free CTE from suspension culture into growth-plate defects resulted in a significant reduction in growth arrest of the rabbit tibia. Introduction. In childhood and adolescence, the
Introduction. NF-κB transcription factors regulate a number of genes that are activated under stress conditions. Blockage of the the canonical NF-κB pathway has been emerged as a possible strategy to cure osteoarthritis and rheumatoid arthritis. However, the roles of κNF-B in normal skeletal physiology are largely unknown owing to the lack of suitable animal models. Here, we investigated the function of canonical κNF-B pathway in the cartilaginous skeleton by ablating Nemo (NF-κB essential modulator) in chondrocytes using the Col2a1 transgene. Methods. Mice were analyzed by skeletal staining, histology, proliferation and apoptosis assays at various stages. Histochemistry, GAG assay and immunohistochemistry were utilized to assess the impact of NEMO-deficiency in cytokine-induced cartilage degradation of hip explants. To identify genes regulated through the canonical NF-κB pathway in response to injury, an ex vivo hip avulsion model was applied. 24 genes known to be induced early following cartilage injury were assessed in wildtype and mutant hips by RT-PCR. Time lapse photography was used to investigate chondrocyte migration in vitro. Atomic force microscopy (AFM) was applied to assess biomechanical properties of the cartilage. Pathological changes of articular cartilage were scored in aged joints. Results. Mutant mice exhibited moderate dwarfism postnatally characterized by disorganized
The use of retrograde femoral intramedullary nails in children for deformity correction is controversial. It is unknown if the injury to the central part of the
Introduction. Human Mesenchymal stem cells (hMSCs) are a promising source for articular cartilage repair. Unfortunately, under in vitro conditions, chondrogenically differentiated hMSCs have the tendency to undergo hypertrophy similar to